Diapycnal eddy diffusivity: Difference between revisions
From Atomix
Created page with "{{netcdfGlossary |parameter_name=Krho |symbol=$K_\rho$ |description=Diapycnal eddy diffusivity |standard_name=turbulent_diffusivity |units=m2 s-1 |cf-compliant=No |instrument_..." |
m Ilker moved page Krho to Diapycnal eddy diffusivity without leaving a redirect |
||
(29 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DefineConcept | ||
|parameter_name= | |parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math> | ||
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\overline{w'\rho'}</math> and the background density gradient <math>\frac{\partial\rho}{\partial z}</math> | |||
|description=Diapycnal eddy diffusivity | |article_type=Concept | ||
| | |instrument_type=Velocity profilers | ||
|instrument_type= | |||
}} | }} | ||
<math>K_\rho = \Gamma \epsilon N^{-2} <\math> | Osborn 1980<ref>Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, Journal of Physical Oceanography, 10(1), 83-89</ref> showed that the buoyancy eddy diffusivity <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}</math> could be reduced to <math>K_\rho=\Gamma \epsilon N^{-2}</math> via the "mixing efficiency" <math>\Gamma</math> and the background stratification <math>N=\sqrt{\frac{-g}{\rho_o}\frac{\partial\rho}{\partial z}}</math>. |
Latest revision as of 14:59, 22 April 2022
Short definition of Diapycnal eddy diffusivity (Diapycnal eddy diffusivity [math]\displaystyle{ K_\rho }[/math]) |
---|
Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux [math]\displaystyle{ \overline{w'\rho'} }[/math] and the background density gradient [math]\displaystyle{ \frac{\partial\rho}{\partial z} }[/math] |
This is the common definition for Diapycnal eddy diffusivity, but other definitions maybe discussed within the wiki.
Osborn 1980[1] showed that the buoyancy eddy diffusivity [math]\displaystyle{ K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z} }[/math] could be reduced to [math]\displaystyle{ K_\rho=\Gamma \epsilon N^{-2} }[/math] via the "mixing efficiency" [math]\displaystyle{ \Gamma }[/math] and the background stratification [math]\displaystyle{ N=\sqrt{\frac{-g}{\rho_o}\frac{\partial\rho}{\partial z}} }[/math].
- ↑ Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, Journal of Physical Oceanography, 10(1), 83-89