Diapycnal eddy diffusivity: Difference between revisions

From Atomix
No edit summary
m Ilker moved page Krho to Diapycnal eddy diffusivity without leaving a redirect
 
(28 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{netcdfGlossary
{{DefineConcept
|parameter_name=Krho
|parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math>
|symbol=<math> K_\rho <\math>
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\overline{w'\rho'}</math> and the background density gradient <math>\frac{\partial\rho}{\partial z}</math>
|description=Diapycnal eddy diffusivity
|article_type=Concept
|standard_name=turbulent_diffusivity
|instrument_type=Velocity profilers
|units=m2 s-1
|cf-compliant=No
|instrument_type=Velocity point-measurements, Velocity profilers, Shear probes
}}
}}
<math> K_\rho = \Gamma \epsilon N^{-2} <\math>
Osborn 1980<ref>Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, Journal of Physical Oceanography, 10(1), 83-89</ref> showed that the buoyancy eddy diffusivity <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}</math> could be reduced to  <math>K_\rho=\Gamma \epsilon N^{-2}</math> via the "mixing efficiency" <math>\Gamma</math> and the background stratification <math>N=\sqrt{\frac{-g}{\rho_o}\frac{\partial\rho}{\partial z}}</math>.

Latest revision as of 14:59, 22 April 2022


Short definition of Diapycnal eddy diffusivity (Diapycnal eddy diffusivity [math]\displaystyle{ K_\rho }[/math])
Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux [math]\displaystyle{ \overline{w'\rho'} }[/math] and the background density gradient [math]\displaystyle{ \frac{\partial\rho}{\partial z} }[/math]

This is the common definition for Diapycnal eddy diffusivity, but other definitions maybe discussed within the wiki.

Osborn 1980[1] showed that the buoyancy eddy diffusivity [math]\displaystyle{ K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z} }[/math] could be reduced to [math]\displaystyle{ K_\rho=\Gamma \epsilon N^{-2} }[/math] via the "mixing efficiency" [math]\displaystyle{ \Gamma }[/math] and the background stratification [math]\displaystyle{ N=\sqrt{\frac{-g}{\rho_o}\frac{\partial\rho}{\partial z}} }[/math].

  1. Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, Journal of Physical Oceanography, 10(1), 83-89