|
|
| (157 intermediate revisions by 5 users not shown) |
| Line 1: |
Line 1: |
|
| |
|
| == Frame of reference ==
| |
| * Define frame of reference, and notation. Use u,v,w and x,y, and z?
| |
| * Dumping a sketch would be useful
| |
|
| |
|
| | == Background (total) velocity == |
| | <div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand"> |
|
| |
|
| == Reynold's Decomposition == | | {| class="wikitable sortable" |
| * Variable names for Decomposition of total, mean, turbulent and waves.
| | |- |
| | ! Symbol |
| | ! Description |
| | ! Units |
| | |- |
| | | <math>u</math> |
| | | zonal or longitudinal component of velocity |
| | | <math> \mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math>v</math> |
| | | meridional or transverse component of velocity |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math>w</math> |
| | | vertical component of velocity |
| | | <math> \mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math>u_e</math> |
| | | error velocity |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | V |
| | | velocity perpendicular to mean flow |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math>W_d</math> |
| | | Profiler fall speed |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math>U_P</math> |
| | | Flow speed past sensor |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | b |
| | | Along-beam velocity from acoustic Doppler sensor |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math> b^{\prime}</math> |
| | | Along-beam velocity from acoustic Doppler sensor with background flow deducted |
| | | <math>\mathrm{m\, s^{-1}}</math> |
| | |- |
| | | <math> \delta{z}</math> |
| | | Vertical size of measurement bin for acoustic Doppler sensor |
| | | <math>\mathrm{m}</math> |
| | |- |
| | | r |
| | | Along-beam distance from acoustic Doppler sensor |
| | | <math>\mathrm{m}</math> |
| | |- |
| | | <math> \delta{r}_0</math> |
| | | Along-beam bin size for acoustic Doppler sensor |
| | | <math>\mathrm{m}</math> |
| | |- |
| | | <math> \delta{r}</math> |
| | | Along-beam bin separation for acoustic Doppler sensor |
| | | <math>\mathrm{m}</math> |
| | |- |
| | | <math> \theta</math> |
| | | Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor |
| | | <math>^{\circ}</math> |
| | |} |
| | </div> |
|
| |
|
| | == Turbulence properties == |
| | <div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand"> |
|
| |
|
| | {| class="wikitable sortable" |
| | |- |
| | ! Symbol |
| | ! Description |
| | ! Eqn |
| | ! Units |
| | |- |
| | | <math>\varepsilon</math> |
| | | The rate of dissipation of turbulent kinetic energy per unit mass by viscosity |
| | | |
| | | <math>\mathrm{W\, kg^{-1}}</math> |
| | |- |
| | | <math>B</math> |
| | | Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. |
| | | <math>B= \frac{g}{\rho} \overline{\rho'w'} </math> |
| | | <math>\mathrm{W\, kg^{-1}}</math> |
| | |- |
| | | <math>P</math> |
| | | The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>. |
| | | <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math> |
| | | <math>\mathrm{W\, kg^{-1}}</math> |
| | |- |
| | | <math>R_f</math> |
| | | Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. |
| | | <math>R_f = \frac{B}{P}</math> |
| | | |
| | |- |
| | | <math>\Gamma</math> |
| | | "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>. |
| | | <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math> |
| | | |
| | |- |
| | | <math>R_i</math> |
| | | (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared |
| | | <math>R_i = \frac{N^2}{S^2} </math> |
| | | |
| | |- |
| | | <math>\kappa_{\rho}</math> |
| | | Turbulent eddy diffusivity via the Osborn (1980) model |
| | | <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math> |
| | | <math>\mathrm{m^2\, s^{-1}}</math> |
| | |- |
| | | <math>D_{ll}</math> |
| | | Second-order longitudinal structure function |
| | | <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math> |
| | | <math>\mathrm{m^2\, s^{-2}}</math> |
| | |} |
| | </div> |
|
| |
|
| == Theoretical Length and Time Scales == | | == Fluid properties and background gradients for turbulence calculations == |
| | <div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand"> |
|
| |
|
| {| class="wikitable" | | {| class="wikitable sortable" |
| |- Style="font-weight:bold; " | | |- |
| ! Symbol | | ! Symbol |
| ! Description | | ! Description |
| Line 19: |
Line 130: |
| ! Units | | ! Units |
| |- | | |- |
| | <math>\epsilon</math> | | | <math>S_P</math> |
| | Turbulent kinetic energy dissipation | | | Practical salinity |
| | | |
| | | <math> - </math> |
| | |- |
| | | <math>T</math> |
| | | Temperature |
| | | |
| | | <math> \mathrm{^{\circ}C } </math> |
| | |- |
| | | <math>P</math> |
| | | Pressure |
| | | | | |
| | W/kg | | | <math>\mathrm{dbar} </math> |
| |- | | |- |
| | <math>\nu</math> | | | <math>\rho</math> |
| | Viscosity of water for seawater at 35psu and 20 oC | | | Density of water |
| | <math> 1\times 10^{-6}</math> | | | <math> \rho = \rho\left(T,S_a,P \right)</math> |
| | m2/s
| | | <math>\mathrm{kg\, m^{-3}} </math> |
| |- | | |- |
| | <math>N</math> | | | <math>\alpha</math> |
| | Buoyancy frequency | | | Temperature coefficient of expansion |
| | <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math> | | | <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math> |
| | rad/s | | | <math> \mathrm{K^{-1}}</math> |
| | |- |
| | | <math>\beta</math> |
| | | Saline coefficient of contraction |
| | | <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math> |
| | | |
| | |- |
| | | <math>S</math> |
| | | Background velocity shear |
| | | <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math> |
| | | <math> \mathrm{s^{-1}} </math> |
| | |- |
| | | <math> \nu_{35} </math> |
| | | Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 |
| | | <math> \sim 1\times 10^{-6} </math> |
| | | <math> \mathrm{m^2\, s^{-1} } </math> |
| | |- |
| | | <math>\nu_{00}</math> |
| | | Temperature dependent kinematic viscosity of freshwater |
| | | <math>\sim 1\times 10^{-6} </math> |
| | | <math>\mathrm{m^2\, s^{-1} } </math> |
| | |- |
| | | <math>\Gamma_a </math> |
| | | Adiabatic temperature gradient -- salinity, temperature and pressure dependent |
| | | <math>\sim 1\times 10^{-4}</math> |
| | | <math>\mathrm{K\, dbar^{-1} } </math> |
| | |- |
| | | <math>N </math> |
| | | Background stratification, i.e buoyancy frequency |
| | | <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math> |
| | | <math>\mathrm{rad\, s^{-1} } </math> |
| | |} |
| | </div> |
| | |
| | == Theoretical Length and Time Scales == |
| | <div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand"> |
| | |
| | {| class="wikitable sortable" |
| | |- |
| | ! Symbol |
| | ! Description |
| | ! Eqn |
| | ! Units |
| |- | | |- |
| | <math>\tau_N</math> | | | <math>\tau_N</math> |
| | Buoyancy timescale | | | Buoyancy timescale |
| | <math> \tau_N = \frac{2\pi}{N}</math> | | | <math> \tau_N = \frac{1}{N}</math> |
| | s | | | <math> \mathrm{s} </math> |
| | |- |
| | | <math>T_N</math> |
| | | Buoyancy period |
| | | <math> T_N = \frac{2\pi}{N}</math> |
| | | <math> \mathrm{s} </math> |
| | |- |
| | | <math>L_E</math> |
| | | Ellison length scale (limit of vertical displacement without irreversible mixing) |
| | | <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math> |
| | | <math> \mathrm{m} </math> |
| | |- |
| | | <math> L_Z</math> |
| | | Boundary (law of the wall) length scale |
| | | <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant |
| | | <math> \mathrm{m} </math> |
| |- | | |- |
| | <math>\eta</math> | | | <math>L_S</math> |
| | | Corssin length scale |
| | | <math> L_S = \sqrt{\varepsilon/S^3} </math> |
| | | <math> \mathrm{m} </math> |
| | |- |
| | | <math>L_K</math> |
| | Kolmogorov length scale (smallest overturns) | | | Kolmogorov length scale (smallest overturns) |
| | <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math> | | | <math>L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> |
| | m [per rad?]
| | | <math> \mathrm{m} </math> |
| |- | | |- |
| | <math>L_o</math> | | | <math>L_o</math> |
| | Ozmidov length scale, measure of largest overturns in a stratified fluid | | | Ozmidov length scale, measure of largest overturns in a stratified fluid |
| | <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math> | | | <math>L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2}</math> |
| | m [per rad?] | | | <math> \mathrm{m} </math> |
| | |- |
| | | <math>L_T</math> |
| | | Thorpe length scale |
| | | <math>L_T</math> |
| | | <math> \mathrm{m} </math> |
| | |- |
| | | <math>z_w</math> |
| | | Distance from a boundary |
| | | <math>z_w</math> |
| | | <math> \mathrm{m} </math> |
| |} | | |} |
| | </div> |
|
| |
|
| == Turbulence Spectrum == | | == Turbulence Spectrum == |
| | <div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand"> |
| | These variables are used to express the [[Turbulence spectrum]] expected shapes. |
|
| |
|
| Taylor's Frozen Turbulence for converting temporal to spatial measurements <math>\left(\bar{u}_1\frac{\partial
| |
| }{\partial{x}} = \frac{\partial}{\partial{t}}\right)</math>
| |
|
| |
|
| | | {| class="wikitable sortable" |
| * Missing the y-axi variable. CEB proposes:
| |
| ** <math>\Psi_{variable}</math> for model/theoretical spectrum of variable e.g., du/dx or u
| |
| ** <math>\Phi_{variable}</math> for observed spectrum of variable e.g., du/dx or u
| |
| * Lowest frequency and wavenumber resolvable
| |
| | |
| {| class="wikitable" | |
| |- Style="font-weight:bold; " | | |- Style="font-weight:bold; " |
| ! Symbol | | ! Symbol |
| Line 71: |
Line 259: |
| | Sampling interval | | | Sampling interval |
| | <math> \frac{1}{f_s} </math> | | | <math> \frac{1}{f_s} </math> |
| | s | | | <math> \mathrm{s} </math> |
| | |- |
| | | <math>f_s</math> |
| | | Sampling rate |
| | | <math>f_s=\frac{1}{\Delta t} </math> |
| | | <math> \mathrm{s^{-1}} </math> |
| |- | | |- |
| | <math>\Delta s</math> | | | <math>\Delta s</math> |
| | Sampling volume dimension | | | Sample spacing |
| | | | | <math> \Delta s = U_P \Delta t </math> |
| | m | | | <math> \mathrm{m} </math> |
| | |- |
| | | <math>\Delta l</math> |
| | | Linear dimension of sampling volume (instrument dependent) |
| | | |
| | | <math> \mathrm{m} </math> |
| |- | | |- |
| | <math>f</math> | | | <math>f</math> |
| | Frequency | | | Cyclic frequency |
| | <math>\frac{\omega}{2\pi}</math> | | | <math>f=\frac{\omega}{2\pi}</math> |
| | Hz | | | <math> \mathrm{Hz} </math> |
| |- | | |- |
| | <math>f_n</math> | | | <math>\omega</math> |
| | | Angular frequency |
| | | <math>\omega = 2\pi f</math> |
| | | <math> \mathrm{rad\, s^{-1}} </math> |
| | |- |
| | | <math>f_N</math> |
| | Nyquist frequency | | | Nyquist frequency |
| | <math>f_n=0.5f_s</math> | | | <math>f_N=0.5f_s</math> |
| | Hz
| | | <math> \mathrm{Hz} </math> |
| |-
| |
| | <math>f_s</math>
| |
| | Sampling frequency
| |
| | <math>f_s=\frac{1}{\Delta t} </math> | |
| | Hz
| |
| |- | | |- |
| | <math>k</math> | | | <math>k</math> |
| | Wavenumbers (angular) | | | Cyclic wavenumber |
| | <math>k=\frac{f}{\bar{u}}=2\pi\hat{k}</math> | | | <math>k=\frac{f}{U_P}</math> |
| | rad/m
| | | <math> \mathrm{cpm} </math> |
| |- | | |- |
| | <math>\hat{k}</math> | | | <math>\hat{k}</math> |
| | Wavenumbers | | | Angular wavenumber |
| | <math>\hat{k}=\frac{k}{2\pi}</math> | | | <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math> |
| | cpm | | | <math> \mathrm{rad\, m^{-1}} </math> |
| |- | | |- |
| | <math>\hat{k}_\Delta</math> | | | <math>\tilde{k}</math> |
| | Nyquist wavenumber, based on sampling volume's size <math>\Delta l</math> | | | Normalized wavenumber |
| | <math>\hat{k}_\Delta=\frac{0.5}{\Delta l}</math> | | | e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math> |
| | cpm | | | - |
| |- | | |- |
| | <math>\hat{k}_n</math> | | | <math>\tilde{\Phi}</math> |
| | Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) | | | Normalized velocity spectrum |
| | <math>\hat{k}_n=\frac{f_n}{u}</math> | | | e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math> |
| | cpm | | | - |
| |- | | |- |
| | <math>\omega</math> | | | <math>\tilde{\Psi}</math> |
| | Angular frequency | | | Normalized shear spectrum |
| | <math>2\pi f</math> | | | e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math> |
| | rad/s | | | - |
| | |- |
| | | <math>k_\Delta</math> |
| | | Nyquist wavenumber, based on sampling volume size <math>\Delta l</math> |
| | | <math>k_\Delta=\frac{0.5}{\Delta l}</math> |
| | | <math> \mathrm{cpm} </math> |
| | |- |
| | | <math>k_N</math> |
| | | Nyquist wavenumber, via Taylor's hypothesis |
| | | <math>k_N=\frac{f_N}{U_P}</math> |
| | | <math> \mathrm{cpm} </math> |
| | |- |
| | | <math>\Psi(k)</math> |
| | | Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum. |
| | | |
| | | <math> \mathrm{s^{-2}\, cpm^{-1}}</math> |
| | |- |
| | | <math>\Phi(k)</math> |
| | | Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum. |
| | | |
| | | <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math> |
| |} | | |} |
| | </div> |
| | |
|
| |
|
| == Test ==
| | [[Category:Glossary]] |
| % Please add the following required packages to your document preamble:
| |
| % \usepackage[table,xcdraw]{xcolor}
| |
| % If you use beamer only pass "xcolor=table" option, i.e. \documentclass[xcolor=table]{beamer}
| |
| \begin{table}[]
| |
| \begin{tabular}{lllllllllll}
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{\% Length scales}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} \textbf{}} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_E} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ellison\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_K} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Kolmogorov\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_RHO} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} density\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_S} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Corssin\_shear\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_O} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ozmidov\_stratification\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} I} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ozmidov\_stratification\_divided\_Kolmogorov} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1000000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} U\_VEL} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} meanflow\_direction\_sea\_water\_velocity} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} V\_VEL} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} crossflow\_direction\_sea\_water\_velocity} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} W\_VEL} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} upward\_sea\_water\_velocity\_rotated} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} meanSpeed} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mean\_velocity\_past\_turbulence\_sensor} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} dropSpeed} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mean\_drop\_speed\_profiler} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} } & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Geographical} & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} z\_ASB} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} height\_above\_seabed} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} HEIGHT} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} elevation} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} up} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} bottom} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Z} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -12000.0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 12000.0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Turbulence properties} & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} EPSI} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} dissipation\_turbulent\_kinetic\_energy} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} W kg-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E+00} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} CHI\_T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} dissipation\_turbulent\_thermal\_variance} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} oC\textasciicircum{}2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E+00} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \%CHI\_F} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} fitted\_dissipation\_turbulent\_thermal\_variance} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} oC\textasciicircum{}2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E+00} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} CHI\_DO} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} fitted\_dissipation\_turbulent\_oxygen\_variance} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} (umol L\textasciicircum{}-1)\textasciicircum{}2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ri\_f} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} flux\_gradient\_richardson\_number} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} K\_T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} turbulent\_diffusivity\_heat} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} K\_O} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} turbulent\_diapycnal\_diffusivity\_osborn} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} K\_Le} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} turbulent\_diffusivity\_density\_prandlt\_model} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-12} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} TAYL} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} taylor\_hypothesis\_ratio\_rmsU\_divided\_meanU} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Turbulence fluxes} & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} NTRA\_FLUX} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} vertical\_turbulent\_nitrate\_flux} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} nmol m-2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} F} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -1e8} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e8} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} wDO\_FLUX} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} vertical\_turbulent\_dissolved\_oxygen\_flux\_eddy} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mmol m-2 d-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} F} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -1e8} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e8} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| \multicolumn{2}{l}{{\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Background gradients for turb computations}} & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ri} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} richardson\_number(N2/S2)} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} SH} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} background\_velocity\_shear} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} rad s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} N} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} background\_stratification} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} rad s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} dT\_dZ} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} background\_vertical\_temperature\_gradient} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} oC m-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} dU\_dZ} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} meanflow\_direction\_shear} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} dV\_dZ} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} crossflow\_direction\_shear} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 10} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} dW\_dZ} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} upward\_direction\_shear} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} V} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Length scales} & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_E} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ellison\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_K} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Kolmogorov\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_RHO} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} density\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_S} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Corssin\_shear\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} L\_O} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ozmidov\_stratification\_length\_scale} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 100000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} I} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} Ozmidov\_stratification\_divided\_Kolmogorov} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} L} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1000000} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| \multicolumn{2}{l}{{\color[HTML]{RGBA(0, 0, 0, 0.847)} \% FLuid properties (based on T and SAL)}} & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} KAPPA\_T} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} seawater\_molecular\_diffusivity\_heat} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} P} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-09} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-05} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} VISC35} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} seawater\_kinematic\_viscosity\_at\_35psu} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m2 s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} P} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-08} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-04} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} KAPPA\_O2} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} seawater\_molecular\_diffusivity\_dissolved\_oxygen} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} m2 s} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} P} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-11} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1.00E-07} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Mean quantities} & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} NITRITE} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mole\_concentration\_of\_nitrite\_in\_sea\_water} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} umole l-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} K} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e5} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} PROXY\_NTRA} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mole\_concentration\_of\_proxy\_nitrate\_in\_sea\_water} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} umole l-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} K} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e9} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} MASS\_NTRA} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mass\_loadings\_nitrate\_in\_sea\_waterB} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} mol s-1} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} K} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -999999} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 1e9} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} float} \\
| |
| & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} \% Other entry for now} & & & & & & & & & & \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} PROFILE\_FNAME} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & \multicolumn{2}{l}{{\color[HTML]{RGBA(0, 0, 0, 0.847)} profile\_fname\_data\_originated}} & & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} char} \\
| |
| {\color[HTML]{RGBA(0, 0, 0, 0.847)} station\_name} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} 0} & {\color[HTML]{RGBA(0, 0, 0, 0.847)} station\_name} & & & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} -} & & & {\color[HTML]{RGBA(0, 0, 0, 0.847)} char}
| |
| \end{tabular}
| |
| \end{table}
| |