Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
 
(74 intermediate revisions by 4 users not shown)
Line 1: Line 1:


== Frame of reference ==
* Define frame of reference, and notation. Use u,v,w and x,y, and z?
* Dumping a sketch would be useful
'''---- MOVE THIS TO CONCEPT ---'''
== Reynold's Decomposition ==
* Variable names for Decomposition of total, mean, turbulent and waves.
* '''Needs to be decided''' across the ADV/ADCP working groups
'''---- MOVE THIS TO FUNDAMENTALS ---'''


== Background (total) velocity ==
== Background (total) velocity ==
'''---- MAKE SURE TO BE CONSISTENT WITH NETCDF TABLE ---'''
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
'''---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---'''


{| class="wikitable"  
{| class="wikitable sortable"
|-
|-
! Symbol
! Symbol
Line 20: Line 10:
! Units
! Units
|-
|-
| u
| <math>u</math>
| zonal velocity
| zonal or longitudinal component of velocity
| <math> \mathrm{m\, s^{-1}}</math>  
| <math> \mathrm{m\, s^{-1}}</math>  
|-
|-
| v
| <math>v</math>
| meridional velocity
| meridional or transverse component of velocity
| <math>\mathrm{m\, s^{-1}}</math>  
| <math>\mathrm{m\, s^{-1}}</math>  
|-
| <math>w</math>
| vertical component of velocity
| <math> \mathrm{m\, s^{-1}}</math>
|-
|-
| <math>u_e</math>  
| <math>u_e</math>  
Line 58: Line 52:
| r
| r
| Along-beam distance from acoustic Doppler sensor
| Along-beam distance from acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}_0</math>
| Along-beam bin size for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
| <math> \delta{r}</math>  
| <math> \delta{r}</math>  
| Along-beam bin size for acoustic Doppler sensor
| Along-beam bin separation for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
Line 68: Line 66:
| <math>^{\circ}</math>  
| <math>^{\circ}</math>  
|}
|}
</div>


== Turbulence properties ==  
== Turbulence properties ==  
[[User:CynthiaBluteau|CynthiaBluteau]] ([[User talk:CynthiaBluteau|talk]]) 21:03, 13 October 2021 (CEST) Many of these could be their own concepts/definitions.
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
{| class="wikitable"  
 
{| class="wikitable sortable"  
|-
|-
! Symbol
! Symbol
Line 79: Line 79:
|-
|-
| <math>\varepsilon</math>
| <math>\varepsilon</math>
| Turbulent kinetic energy dissipation rate
| The rate of dissipation of turbulent kinetic energy per unit mass by viscosity
|  
|  
| <math>\mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| Ri
| <math>B</math>
| Richardson number
| Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy.
| <math>Ri = \frac{N^2}{S^2}</math>
| <math>B= \frac{g}{\rho} \overline{\rho'w'} </math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>P</math>
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>.
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>R_f</math>
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.
| <math>R_f = \frac{B}{P}</math>
|
|-
| <math>\Gamma</math>
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>.
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
|  
|  
|-
|-
| <math> Ri_f </math>
| <math>R_i</math>
| Flux gradient Richardson number
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| <math>\frac{B}{P}</math> or Ivey & Imberger? Karan et cie
| <math>R_i = \frac{N^2}{S^2} </math>
|  
|  
|-
|-
| <math>\kappa_\rho</math>
| <math>\kappa_{\rho}</math>
| Turbulent diffusivity
| Turbulent eddy diffusivity via the Osborn (1980) model
| \kappa = \Gamma \varepsilon N^{-2}
| <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
|-
|-
| <math>D_{LL}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| Second-order longitudinal structure function
| <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}
</div>


== Fluid properties and background gradients for turbulence calculations ==
== Fluid properties and background gradients for turbulence calculations ==
{| class="wikitable"  
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
 
{| class="wikitable sortable"  
|-
|-
! Symbol
! Symbol
! Description
! Description
! Eqn
! Units
! Units
! Eqn
|-
|-
| <math>S_a</math>
| <math>S_P</math>
| Salinity
| Practical salinity
|  
|  
| <math> \sim 35 </math>
| <math> - </math>
|-
|-
| T
| <math>T</math>
| Temperature
| Temperature
|
| <math> \mathrm{^{\circ}C } </math>
| <math> \mathrm{^{\circ}C } </math>
| <math>\sim -2 \rightarrow 40 </math>
|-
|-
| P
| <math>P</math>
| Pressure
| Pressure
|
| <math>\mathrm{dbar} </math>
| <math>\mathrm{dbar} </math>
| <math>0\ \rightarrow\ \sim 1\times10^4</math>
|-
|-
| <math>\rho</math>
| <math>\rho</math>
| Density of water
| Density of water
| <math> \rho = \rho\left(T,S_a,P \right)</math>
| <math>\mathrm{kg\, m^{-3}} </math>
| <math>\mathrm{kg\, m^{-3}} </math>
| <math> \rho = \rho\left(T,S_a,P \right)</math>
|-
|-
| <math>\alpha</math>
| <math>\alpha</math>
| Temperature coefficient of expansion
| Temperature coefficient of expansion
| <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math>
| <math> \mathrm{K^{-1}}</math>
| <math> \mathrm{K^{-1}}</math>
| <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math>
|-
|-
| <math>\beta</math>
| <math>\beta</math>
| Saline coefficient of contraction
| Saline coefficient of contraction
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
|  
|  
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math>
|-
|-
| S
| <math>S</math>
| Background velocity shear
| Background velocity shear
| <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math>
| <math> \mathrm{s^{-1}} </math>
| <math> \mathrm{s^{-1}} </math>
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math>
|-
|-
| <math> \nu_{35} </math>
| <math> \nu_{35} </math>
| Temperature dependent kinematic viscosity of seawater at a salinity of 35
| Temperature dependent kinematic viscosity of seawater at a practical salinity of 35
| <math> \sim 1\times 10^{-6} </math>
| <math> \mathrm{m^2\, s^{-1} } </math>
| <math> \mathrm{m^2\, s^{-1} } </math>
| <math> \sim 1\times 10^{-6} </math>
|-
|-
| <math>\nu_{00}</math>
| <math>\nu_{00}</math>
| Temperature dependent kinematic viscosity of freshwater
| Temperature dependent kinematic viscosity of freshwater
| <math>\sim 1\times 10^{-6} </math>
| <math>\mathrm{m^2\, s^{-1} } </math>
| <math>\mathrm{m^2\, s^{-1} } </math>
| <math>\sim 1\times 10^{-6} </math>
|-
|-
| <math>\Gamma </math>
| <math>\Gamma_a </math>
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| <math>\sim 1\times 10^{-4}</math>
| <math>\mathrm{K\, dbar^{-1} } </math>
| <math>\mathrm{K\, dbar^{-1} } </math>
| <math>\sim 1\times 10^{-4}</math>
|-
|-
| <math>N </math>
| <math>N </math>
| Background stratification, i.e buoyancy frequency
| Background stratification, i.e buoyancy frequency
| <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math>
| <math>\mathrm{rad\, s^{-1} } </math>
| <math>\mathrm{rad\, s^{-1} } </math>
| <math>N^2 = g\left[ \alpha\left(\Gamma + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_a}{\partial z} \right] </math>
|}
|}
</div>


== Theoretical Length and Time Scales ==
== Theoretical Length and Time Scales ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">


{| class="wikitable"
{| class="wikitable sortable"  
|- Style="font-weight:bold; "
|-
! Parameter
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| T_N
| <math>\tau_N</math>
| <math>\tau_N</math>
| Buoyancy timescale
| Buoyancy timescale
| buoyancy_time_scale
| <math> \tau_N = \frac{1}{N}</math>
| <math> \tau_N = \frac{1}{N}</math>
| <math> \mathrm{s} </math>
| <math> \mathrm{s} </math>
|-
|-
| T_P
| <math>T_N</math>
| <math>T_N</math>
| Buoyancy period
| Buoyancy period
| buoyancy_period
| <math> T_N = \frac{2\pi}{N}</math>
| <math> T_N = \frac{2\pi}{N}</math>
| <math> \mathrm{s} </math>
| <math> \mathrm{s} </math>
|-
|-
| L_E
| <math>L_E</math>
| <math>L_E</math>
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Eliison_lenght_scale
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| <math> \mathrm{m} </math>  
| <math> \mathrm{m} </math>
|-
|-
| L_RHO
| <math> L_Z</math>
| <math> L_\rho</math>
| Boundary (law of the wall) length scale
| Density length scale
| <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant
| density_length_scale
| <math> L_\rho </math>
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|-
|-
| L_S
| <math>L_S</math>
| <math>L_S</math>
| Corssin length scale
| Corssin length scale
| Corssin_shear_length_scale
| <math> L_S = \sqrt{\varepsilon/S^3} </math>
| <math> L_S = \sqrt{\varepsilon/S^3} </math>
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|-
|-
| L_K
| <math>\eta</math>
| Kolmogorov length scale (smallest overturns)
| Kolmogorov_length_scale
| <math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
| <math> \mathrm{m} </math>
|-
| L_K
| <math>L_K</math>
| <math>L_K</math>
| Kolmogorov length scale (smallest overturns)
| Kolmogorov length scale (smallest overturns)
| Kolmogorov_length_scale
| <math>L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
| <math>L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
| <math> \mathrm{m} </math>  
| <math> \mathrm{m} </math>
|-
|-
| L_O
| <math>L_o</math>
| <math>L_o</math>
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| Ozmidov_stratification_length_scale
| <math>L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2}</math>
| <math>L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2}</math>
| <math> \mathrm{m} </math>  
| <math> \mathrm{m} </math>
|-
|-
| L_T
| <math>L_T</math>
| <math>L_T</math>
| Thorp length scale
| Thorpe length scale
| Thorpe_stratification_length_scale
| <math>L_T</math>
| <math>L_T</math>
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|-  
|-
| <math>z_w</math>
| Distance from a boundary
| <math>z_w</math>
| <math> \mathrm{m} </math>
|}
|}
</div>


== Turbulence Spectrum ==
== Turbulence Spectrum ==
'''---- MERGE WITH THE SPECTRUM IN FUNDEMENTALS ---'''
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
 
These variables are used to express the [[Turbulence spectrum]] expected shapes.
Taylor's Frozen Turbulence for converting temporal to spatial measurements.
Convert time derivatives to spatial gradients along the direction of profiling using
 
<math> \frac{\partial}{\partial x} = \frac{1}{U_P} \frac{\partial}{\partial t} </math> .
 
Convert frequency spectra into wavenumber spectra using
 
<math> k = f/U_P </math>
and
<math> \Psi(k) = U_P \Psi(f) </math> .
 




* Missing the y-axi variable. CEB proposes:
{| class="wikitable sortable"
** <math>\Psi_{variable}</math> for model/theoretical spectrum of variable e.g., du/dx or u
** <math>\Phi_{variable}</math> for observed spectrum of variable e.g., du/dx or u
* Lowest frequency and wavenumber resolvable
 
{| class="wikitable"
|- Style="font-weight:bold; "
|- Style="font-weight:bold; "
! Symbol
! Symbol
Line 316: Line 300:
| <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math>
| <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math>
| <math> \mathrm{rad\, m^{-1}} </math>
| <math> \mathrm{rad\, m^{-1}} </math>
|-
| <math>\tilde{k}</math>
| Normalized wavenumber
| e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math>
| -
|-
| <math>\tilde{\Phi}</math>
| Normalized velocity spectrum
| e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math>
| -
|-
| <math>\tilde{\Psi}</math>
| Normalized shear spectrum
| e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math>
| -
|-
|-
| <math>k_\Delta</math>
| <math>k_\Delta</math>
Line 326: Line 325:
| <math>k_N=\frac{f_N}{U_P}</math>
| <math>k_N=\frac{f_N}{U_P}</math>
| <math> \mathrm{cpm} </math>
| <math> \mathrm{cpm} </math>
|-
| <math>\Psi(k)</math>
| Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum.
|
| <math> \mathrm{s^{-2}\, cpm^{-1}}</math>
|-
| <math>\Phi(k)</math>
| Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum.
|
| <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math>
|}
|}
</div>
[[Category:Glossary]]

Latest revision as of 15:09, 2 June 2022


Background (total) velocity

Symbol Description Units
u zonal or longitudinal component of velocity ms1
v meridional or transverse component of velocity ms1
w vertical component of velocity ms1
ue error velocity ms1
V velocity perpendicular to mean flow ms1
Wd Profiler fall speed ms1
UP Flow speed past sensor ms1
b Along-beam velocity from acoustic Doppler sensor ms1
b Along-beam velocity from acoustic Doppler sensor with background flow deducted ms1
δz Vertical size of measurement bin for acoustic Doppler sensor m
r Along-beam distance from acoustic Doppler sensor m
δr0 Along-beam bin size for acoustic Doppler sensor m
δr Along-beam bin separation for acoustic Doppler sensor m
θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor

Turbulence properties

Symbol Description Eqn Units
ε The rate of dissipation of turbulent kinetic energy per unit mass by viscosity Wkg1
B Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. B=gρρw Wkg1
P The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example P=uwUz . The production is balanced by the rate of dissipation turbulence kinetic energy, ε, and the production of potential energy by the buoyancy flux, B. P=uwUz=ε+B Wkg1
Rf Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. Rf=BP
Γ "Mixing coefficient"; The ratio of the rate of production of potential energy, B, to the rate of dissipation of kinetic energy, ε. Γ=Bε=Rf1Rf
Ri (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared Ri=N2S2
κρ Turbulent eddy diffusivity via the Osborn (1980) model κρ=ΓεN2 m2s1
Dll Second-order longitudinal structure function Dll=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
SP Practical salinity
T Temperature C
P Pressure dbar
ρ Density of water ρ=ρ(T,Sa,P) kgm3
α Temperature coefficient of expansion α=1ρρT K1
β Saline coefficient of contraction β=1ρρSP
S Background velocity shear S=[(Uz)2+(Vz)2]1/2 s1
ν35 Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 1×106 m2s1
ν00 Temperature dependent kinematic viscosity of freshwater 1×106 m2s1
Γa Adiabatic temperature gradient -- salinity, temperature and pressure dependent 1×104 Kdbar1
N Background stratification, i.e buoyancy frequency N2=g[α(Γa+Tz)βSPz] rads1

Theoretical Length and Time Scales

Symbol Description Eqn Units
τN Buoyancy timescale τN=1N s
TN Buoyancy period TN=2πN s
LE Ellison length scale (limit of vertical displacement without irreversible mixing) LE=ρ'21/2ρ/z m
LZ Boundary (law of the wall) length scale LZ=0.39zw with 0.39 being von Kármán's constant m
LS Corssin length scale LS=ε/S3 m
LK Kolmogorov length scale (smallest overturns) LK=(ν3ε)1/4 m
Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Lo=(εN3)1/2 m
LT Thorpe length scale LT m
zw Distance from a boundary zw m

Turbulence Spectrum

These variables are used to express the Turbulence spectrum expected shapes.


Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
k~ Normalized wavenumber e.g., k~=kLK,LK=(ν3/ε)1/4 -
Φ~ Normalized velocity spectrum e.g., Φ~u(k~)=(ϵν5)1/4Φu(k) -
Ψ~ Normalized shear spectrum e.g., Ψ~(k~)=LK2(ϵν5)1/4Ψ(k) -
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm
Ψ(k) Shear spectrum. Use Ψ1, Ψ2 to distinguish the orthogonal components of the shear. Use ΨN for the Nasmyth spectrum, ΨPK for the Panchev-Kesich spectrum and ΨL for the Lueck spectrum. s2cpm1
Φ(k) Velocity spectrum. Use Φu, Φv, Φv, or Φ1, Φ2 , Φ3 for the different orthogonal components of the velocity. Use ΦK for the Kolmogorov spectrum. m2s2cpm1