Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
 
(42 intermediate revisions by 4 users not shown)
Line 2: Line 2:


== Background (total) velocity ==
== Background (total) velocity ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand Velocity">
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
 


{| class="wikitable  sortable"
{| class="wikitable  sortable"
Line 11: Line 10:
! Units
! Units
|-
|-
| u
| <math>u</math>
| zonal velocity
| zonal or longitudinal component of velocity
| <math> \mathrm{m\, s^{-1}}</math>  
| <math> \mathrm{m\, s^{-1}}</math>  
|-
|-
| v
| <math>v</math>
| meridional velocity
| meridional or transverse component of velocity
| <math>\mathrm{m\, s^{-1}}</math>  
| <math>\mathrm{m\, s^{-1}}</math>  
|-
| <math>w</math>
| vertical component of velocity
| <math> \mathrm{m\, s^{-1}}</math>
|-
|-
| <math>u_e</math>  
| <math>u_e</math>  
Line 49: Line 52:
| r
| r
| Along-beam distance from acoustic Doppler sensor
| Along-beam distance from acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}_0</math>
| Along-beam bin size for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
| <math> \delta{r}</math>  
| <math> \delta{r}</math>  
| Along-beam bin size for acoustic Doppler sensor
| Along-beam bin separation for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
Line 62: Line 69:


== Turbulence properties ==  
== Turbulence properties ==  
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand Turbulence Properties">
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">


{| class="wikitable sortable"  
{| class="wikitable sortable"  
Line 72: Line 79:
|-
|-
| <math>\varepsilon</math>
| <math>\varepsilon</math>
| Viscous dissipation rate of turbulent kinetic energy per unit mass
| The rate of dissipation of turbulent kinetic energy per unit mass by viscosity
|  
|  
| <math>\mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| Ri
| <math>B</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy.
| <math>Ri = \frac{N^2}{S^2} </math>
| <math>B= \frac{g}{\rho} \overline{\rho'w'} </math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>P</math>
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>.
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>R_f</math>
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.
| <math>R_f = \frac{B}{P}</math>
|
|-
| <math>\Gamma</math>
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>.
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
|  
|  
|-
|-
| Ri<math> _f</math>
| <math>R_i</math>
| Flux Richardson number; the ratio of the buoyancy flux to the shear production of turbulent kinetic energy
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| <math>\frac{B}{P}</math>  
| <math>R_i = \frac{N^2}{S^2} </math>
|  
|  
|-
|-
| <math>\kappa_\rho</math>
| <math>\kappa_{\rho}</math>
| Turbulent eddy diffusivity via the Osborn (1980) model
| Turbulent eddy diffusivity via the Osborn (1980) model
| <math>\kappa = \Gamma \varepsilon N^{-2}</math>  
| <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math>  
| <math>\mathrm{m^2\, s^{-1}}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
|-
|-
| <math>D_{LL}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| Second-order longitudinal structure function
| <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}
Line 99: Line 121:


== Fluid properties and background gradients for turbulence calculations ==
== Fluid properties and background gradients for turbulence calculations ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand Fluid Properties">
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">


{| class="wikitable sortable"  
{| class="wikitable sortable"  
Line 113: Line 135:
| <math> - </math>
| <math> - </math>
|-
|-
| T
| <math>T</math>
| Temperature
| Temperature
|  
|  
| <math> \mathrm{^{\circ}C } </math>
| <math> \mathrm{^{\circ}C } </math>
|-
|-
| P
| <math>P</math>
| Pressure
| Pressure
|
|
Line 135: Line 157:
| <math>\beta</math>
| <math>\beta</math>
| Saline coefficient of contraction
| Saline coefficient of contraction
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math>
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
|  
|  
|-
|-
| S
| <math>S</math>
| Background velocity shear
| Background velocity shear
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math>
| <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math>
| <math> \mathrm{s^{-1}} </math>
| <math> \mathrm{s^{-1}} </math>
|-
|-
Line 153: Line 175:
| <math>\mathrm{m^2\, s^{-1} } </math>
| <math>\mathrm{m^2\, s^{-1} } </math>
|-
|-
| <math>\Gamma </math>
| <math>\Gamma_a </math>
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| <math>\sim 1\times 10^{-4}</math>
| <math>\sim 1\times 10^{-4}</math>
Line 160: Line 182:
| <math>N </math>
| <math>N </math>
| Background stratification, i.e buoyancy frequency
| Background stratification, i.e buoyancy frequency
| <math>N^2 = g\left[ \alpha\left(\Gamma + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_a}{\partial z} \right] </math>
| <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math>
| <math>\mathrm{rad\, s^{-1} } </math>
| <math>\mathrm{rad\, s^{-1} } </math>
|}
|}
Line 166: Line 188:


== Theoretical Length and Time Scales ==
== Theoretical Length and Time Scales ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand Turbulence Scales">
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">


{| class="wikitable sortable"  
{| class="wikitable sortable"  
Line 190: Line 212:
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|-
|-
| <math> L_\rho</math>
| <math> L_Z</math>
| Density length scale
| Boundary (law of the wall) length scale
| <math> L_\rho </math>
| <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|-
|-
Line 198: Line 220:
| Corssin length scale
| Corssin length scale
| <math> L_S = \sqrt{\varepsilon/S^3} </math>
| <math> L_S = \sqrt{\varepsilon/S^3} </math>
| <math> \mathrm{m} </math>
|-
| <math>\eta</math>
| Kolmogorov length scale (smallest overturns)
| <math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|-
|-
Line 218: Line 235:
| Thorpe length scale
| Thorpe length scale
| <math>L_T</math>
| <math>L_T</math>
| <math> \mathrm{m} </math>
|-
| <math>z_w</math>
| Distance from a boundary
| <math>z_w</math>
| <math> \mathrm{m} </math>
| <math> \mathrm{m} </math>
|}
|}
Line 223: Line 245:


== Turbulence Spectrum ==
== Turbulence Spectrum ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand Spectrum">
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
These variables are used to express the [[Turbulence spectrum]] expected shapes.
These variables are used to express the [[Turbulence spectrum]] expected shapes.


Line 278: Line 300:
| <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math>
| <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math>
| <math> \mathrm{rad\, m^{-1}} </math>
| <math> \mathrm{rad\, m^{-1}} </math>
|-
| <math>\tilde{k}</math>
| Normalized wavenumber
| e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math>
| -
|-
| <math>\tilde{\Phi}</math>
| Normalized velocity spectrum
| e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math>
| -
|-
| <math>\tilde{\Psi}</math>
| Normalized shear spectrum
| e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math>
| -
|-
|-
| <math>k_\Delta</math>
| <math>k_\Delta</math>
Line 289: Line 326:
| <math> \mathrm{cpm} </math>
| <math> \mathrm{cpm} </math>
|-
|-
| <math>\Psi_{\mathrm{variable}}(k)</math>  
| <math>\Psi(k)</math>  
| Theoretical, empirical or model spectrum of any given variable
| Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum.
|  
|  
| units of the variable squared/units of k (i.e.,cpm)
| <math> \mathrm{s^{-2}\, cpm^{-1}}</math>
|-
|-
| <math>\Phi_{\mathrm{variable}}(k)</math>  
| <math>\Phi(k)</math>  
| Observed spectrum of any given variable
| Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum.
|  
|  
| units of the variable squared/units of k (i.e.,cpm)
| <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math>
|}
|}
</div>
</div>

Latest revision as of 15:09, 2 June 2022


Background (total) velocity

Turbulence properties

Fluid properties and background gradients for turbulence calculations

Theoretical Length and Time Scales

Turbulence Spectrum