Nomenclature: Difference between revisions
From Atomix
Yuengdjern (talk | contribs) No edit summary |
|||
(36 intermediate revisions by 4 users not shown) | |||
Line 10: | Line 10: | ||
! Units | ! Units | ||
|- | |- | ||
| u | | <math>u</math> | ||
| zonal velocity | | zonal or longitudinal component of velocity | ||
| <math> \mathrm{m\, s^{-1}}</math> | | <math> \mathrm{m\, s^{-1}}</math> | ||
|- | |- | ||
| v | | <math>v</math> | ||
| meridional velocity | | meridional or transverse component of velocity | ||
| <math>\mathrm{m\, s^{-1}}</math> | | <math>\mathrm{m\, s^{-1}}</math> | ||
|- | |||
| <math>w</math> | |||
| vertical component of velocity | |||
| <math> \mathrm{m\, s^{-1}}</math> | |||
|- | |- | ||
| <math>u_e</math> | | <math>u_e</math> | ||
Line 48: | Line 52: | ||
| r | | r | ||
| Along-beam distance from acoustic Doppler sensor | | Along-beam distance from acoustic Doppler sensor | ||
| <math>\mathrm{m}</math> | |||
|- | |||
| <math> \delta{r}_0</math> | |||
| Along-beam bin size for acoustic Doppler sensor | |||
| <math>\mathrm{m}</math> | | <math>\mathrm{m}</math> | ||
|- | |- | ||
| <math> \delta{r}</math> | | <math> \delta{r}</math> | ||
| Along-beam bin | | Along-beam bin separation for acoustic Doppler sensor | ||
| <math>\mathrm{m}</math> | | <math>\mathrm{m}</math> | ||
|- | |- | ||
Line 71: | Line 79: | ||
|- | |- | ||
| <math>\varepsilon</math> | | <math>\varepsilon</math> | ||
| | | The rate of dissipation of turbulent kinetic energy per unit mass by viscosity | ||
| | | | ||
| <math>\mathrm{W\, kg^{-1}}</math> | | <math>\mathrm{W\, kg^{-1}}</math> | ||
|- | |- | ||
| | | <math>B</math> | ||
| | | Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. | ||
| <math> | | <math>B= \frac{g}{\rho} \overline{\rho'w'} </math> | ||
| <math>\mathrm{W\, kg^{-1}}</math> | |||
|- | |||
| <math>P</math> | |||
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>. | |||
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math> | |||
| <math>\mathrm{W\, kg^{-1}}</math> | |||
|- | |||
| <math>R_f</math> | |||
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. | |||
| <math>R_f = \frac{B}{P}</math> | |||
| | |||
|- | |||
| <math>\Gamma</math> | |||
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>. | |||
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math> | |||
| | | | ||
|- | |- | ||
| | | <math>R_i</math> | ||
| | | (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared | ||
| <math>\frac{ | | <math>R_i = \frac{N^2}{S^2} </math> | ||
| | | | ||
|- | |- | ||
| <math>\kappa_\rho</math> | | <math>\kappa_{\rho}</math> | ||
| Turbulent eddy diffusivity via the Osborn (1980) model | | Turbulent eddy diffusivity via the Osborn (1980) model | ||
| <math>\ | | <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math> | ||
| <math>\mathrm{m^2\, s^{-1}}</math> | | <math>\mathrm{m^2\, s^{-1}}</math> | ||
|- | |- | ||
| <math>D_{ | | <math>D_{ll}</math> | ||
| Second-order longitudinal structure function | | Second-order longitudinal structure function | ||
| <math>D_{ | | <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math> | ||
| <math>\mathrm{m^2\, s^{-2}}</math> | | <math>\mathrm{m^2\, s^{-2}}</math> | ||
|} | |} | ||
Line 112: | Line 135: | ||
| <math> - </math> | | <math> - </math> | ||
|- | |- | ||
| T | | <math>T</math> | ||
| Temperature | | Temperature | ||
| | | | ||
| <math> \mathrm{^{\circ}C } </math> | | <math> \mathrm{^{\circ}C } </math> | ||
|- | |- | ||
| P | | <math>P</math> | ||
| Pressure | | Pressure | ||
| | | | ||
Line 134: | Line 157: | ||
| <math>\beta</math> | | <math>\beta</math> | ||
| Saline coefficient of contraction | | Saline coefficient of contraction | ||
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial | | <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math> | ||
| | | | ||
|- | |- | ||
| S | | <math>S</math> | ||
| Background velocity shear | | Background velocity shear | ||
| <math> S = \left | | <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math> | ||
| <math> \mathrm{s^{-1}} </math> | | <math> \mathrm{s^{-1}} </math> | ||
|- | |- | ||
Line 152: | Line 175: | ||
| <math>\mathrm{m^2\, s^{-1} } </math> | | <math>\mathrm{m^2\, s^{-1} } </math> | ||
|- | |- | ||
| <math>\ | | <math>\Gamma_a </math> | ||
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent | | Adiabatic temperature gradient -- salinity, temperature and pressure dependent | ||
| <math>\sim 1\times 10^{-4}</math> | | <math>\sim 1\times 10^{-4}</math> | ||
Line 159: | Line 182: | ||
| <math>N </math> | | <math>N </math> | ||
| Background stratification, i.e buoyancy frequency | | Background stratification, i.e buoyancy frequency | ||
| <math>N^2 = g\left[ \alpha\left(\ | | <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math> | ||
| <math>\mathrm{rad\, s^{-1} } </math> | | <math>\mathrm{rad\, s^{-1} } </math> | ||
|} | |} | ||
Line 189: | Line 212: | ||
| <math> \mathrm{m} </math> | | <math> \mathrm{m} </math> | ||
|- | |- | ||
| <math> | | <math> L_Z</math> | ||
| | | Boundary (law of the wall) length scale | ||
| <math> | | <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant | ||
| <math> \mathrm{m} </math> | | <math> \mathrm{m} </math> | ||
|- | |- | ||
Line 197: | Line 220: | ||
| Corssin length scale | | Corssin length scale | ||
| <math> L_S = \sqrt{\varepsilon/S^3} </math> | | <math> L_S = \sqrt{\varepsilon/S^3} </math> | ||
| <math> \mathrm{m} </math> | | <math> \mathrm{m} </math> | ||
|- | |- | ||
Line 217: | Line 235: | ||
| Thorpe length scale | | Thorpe length scale | ||
| <math>L_T</math> | | <math>L_T</math> | ||
| <math> \mathrm{m} </math> | |||
|- | |||
| <math>z_w</math> | |||
| Distance from a boundary | |||
| <math>z_w</math> | |||
| <math> \mathrm{m} </math> | | <math> \mathrm{m} </math> | ||
|} | |} | ||
Line 277: | Line 300: | ||
| <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math> | | <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math> | ||
| <math> \mathrm{rad\, m^{-1}} </math> | | <math> \mathrm{rad\, m^{-1}} </math> | ||
|- | |||
| <math>\tilde{k}</math> | |||
| Normalized wavenumber | |||
| e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math> | |||
| - | |||
|- | |||
| <math>\tilde{\Phi}</math> | |||
| Normalized velocity spectrum | |||
| e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math> | |||
| - | |||
|- | |||
| <math>\tilde{\Psi}</math> | |||
| Normalized shear spectrum | |||
| e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math> | |||
| - | |||
|- | |- | ||
| <math>k_\Delta</math> | | <math>k_\Delta</math> | ||
Line 288: | Line 326: | ||
| <math> \mathrm{cpm} </math> | | <math> \mathrm{cpm} </math> | ||
|- | |- | ||
| <math>\ | | <math>\Psi(k)</math> | ||
| | | Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum. | ||
| | | | ||
| | | <math> \mathrm{s^{-2}\, cpm^{-1}}</math> | ||
|- | |- | ||
| <math>\ | | <math>\Phi(k)</math> | ||
| | | Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum. | ||
| | | | ||
| | | <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 15:09, 2 June 2022