Velocity point-measurements: Difference between revisions

From Atomix
mNo edit summary
 
(35 intermediate revisions by the same user not shown)
Line 1: Line 1:
= Welcome to the velocity point-measurements subgroup! =
= Welcome to the velocity point-measurements subgroup! =
This subgroup addresses best practices in obtaining [[turbulent kinetic energy dissipation]] rate estimates from time series of velocities measured at a point in space. These temporal measurements are converted into spectral observations in the wavenumber (space) domain before being fitted with a model spectrum to obtain [[turbulent kinetic energy dissipation]].
This subgroup addresses best practices in obtaining [[turbulent kinetic energy dissipation]] rate estimates from time series of velocities measured at a point in space. Our recommendations are designed for measurements collected by any manufacturer, provided the data quality is sufficient for resolving the [[Velocity inertial subrange model|inertial subrange]] of the velocity spectra.


= Scope =
The subgroup will provide recommendations on:
# [[data processing of raw measurements]]
# [[segmenting datasets]]
# [[spectral computations]]  and identifying the appropriate  [[Velocity inertial subrange model|inertial subrange model]] (e.g., surface wave considerations)
# [[Estimate epsilon|estimating <math>\varepsilon</math>]] and associated [[quality control measures]]


These four processing levels coincide with the hierarchal format of the ATOMIX [[NetCDF velocimeters format]] for the [[benchmark datasets for velocity measurements|benchmark datasets]]. These [[benchmark datasets for velocity measurements|benchmarks]] are intended to be a resource that the community can use to evaluate routines in any programming language. Our recommendations are designed for measurements collected by any manufacturer, provided the data quality is sufficient for resolving the turbulence subrange of the velocity spectra.
{|class="wikitable" style="margin-left: auto; margin-right: auto; border: none; text-align:center;"
 
|[[File:Advprocessing.png|180px|link=Flow chart for velocity point-measurements|Flow chart for velocity point-measurements]]
We will be providing [[benchmark datasets for velocity measurements|benchmarks for velocity measurements]] both impacted and unaffected by surface waves.  We will not be giving benchmark datasets for moored platforms at this time. However, we will include appropriate references to existing literature.
|[[File:Benchmark adv netcdf.png|370px|link=NetCDF velocimeters format|NetCDF velocimeters format]]
|[[File:TIC Leopold 1.jpg|150px|link=benchmark datasets for velocity measurements|benchmark datasets]]
|-
|[[Flow chart for velocity point-measurements|Flow chart for data processing]]
|[[NetCDF velocimeters format |NetCDF dataset format]]
|[[benchmark datasets for velocity measurements|Benchmark datasets]]
|}


We will provide  [[benchmark datasets for velocity measurements|benchmarks for velocity measurements]] both impacted and unaffected by surface waves. These [[benchmark datasets for velocity measurements|benchmarks]] will be a resource for the Ocean Mixing Community to evaluate routines in any programming language.  These [[benchmark datasets for velocity measurements|benchmarks]] will be limited to instruments fixed in space. We will nonetheless include appropriate references to the existing literature on handling moored instruments.




----
[[Category:Velocity point-measurements]]
[[Category:Velocity point-measurements]]

Latest revision as of 12:52, 5 July 2022

Welcome to the velocity point-measurements subgroup!

This subgroup addresses best practices in obtaining turbulent kinetic energy dissipation rate estimates from time series of velocities measured at a point in space. Our recommendations are designed for measurements collected by any manufacturer, provided the data quality is sufficient for resolving the inertial subrange of the velocity spectra.


Flow chart for velocity point-measurements NetCDF velocimeters format benchmark datasets
Flow chart for data processing NetCDF dataset format Benchmark datasets

We will provide benchmarks for velocity measurements both impacted and unaffected by surface waves. These benchmarks will be a resource for the Ocean Mixing Community to evaluate routines in any programming language. These benchmarks will be limited to instruments fixed in space. We will nonetheless include appropriate references to the existing literature on handling moored instruments.