Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
 
(147 intermediate revisions by 5 users not shown)
Line 1: Line 1:


== Frame of reference ==
* Define frame of reference, and notation. Use u,v,w and x,y, and z?
* Dumping a sketch would be useful


{| class="wikitable"
== Background (total) velocity ==
|- Style="font-weight:bold; "
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
! Parameter name
 
{| class="wikitable sortable"
|-
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Units
! Units
|-
|-
|EAST_VEL
| <math>u</math>
| <math> u </math>
| zonal or longitudinal component of velocity
| zonal velocity
| <math> \mathrm{m\, s^{-1}}</math>
| eastward_velocity
| m s-1  
|-
|-
|NORTH_VEL
| <math>v</math>
| <math> v </math>
| meridional or transverse component of velocity
| meridional velocity
| <math>\mathrm{m\, s^{-1}}</math>  
| northward_velocity
| m s-1
|-
|UP_VEL
| <math> W </math>
| vertical velocity
| upward_velocity
| m s-1
|-
|-
|ERROR_VEL
| <math>w</math>
| <math> u </math>
| vertical component of velocity
| <math> \mathrm{m\, s^{-1}}</math>
|-
| <math>u_e</math>  
| error velocity
| error velocity
| error_velocity
| <math>\mathrm{m\, s^{-1}}</math>  
| m s-1  
|-
|U_VEL
| <math> U </math>
| velocity parellel to mean flow
| meanflow_velocity
| m s-1
|-
|-
|V_VEL
| V
| <math> V </math>
| velocity perpendicular to mean flow
| velocity perpendicular to mean flow
| crossflow_velocity
| <math>\mathrm{m\, s^{-1}}</math>
| m s-1
|-
|-
|Drop_Speed
| <math>W_d</math>  
| <math> W_d </math>
| Profiler fall speed
| Profiler fall speed
| mean_drop_speed
| <math>\mathrm{m\, s^{-1}}</math>
| m s-1
|-
|-
|FlowPast_Speed
| <math>U_P</math>  
| <math> U_fp </math>
| Flow speed past sensor
| Flow speed past sensor
| mean_velocity_past_turbulence_sensor
| <math>\mathrm{m\, s^{-1}}</math>
| m s-1
|-
|-
| b
| Along-beam velocity from acoustic Doppler sensor
| <math>\mathrm{m\, s^{-1}}</math>
|-
| <math> b^{\prime}</math>
| Along-beam velocity from acoustic Doppler sensor with background flow deducted
| <math>\mathrm{m\, s^{-1}}</math>
|-
| <math> \delta{z}</math>
| Vertical size of measurement bin for acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| r
| Along-beam distance from acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}_0</math>
| Along-beam bin size for acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}</math>
| Along-beam bin separation for acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \theta</math>
| Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor
| <math>^{\circ}</math>
|}
|}
</div>


== Reynold's Decomposition ==
== Turbulence properties ==  
* Variable names for Decomposition of total, mean, turbulent and waves.
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">


 
{| class="wikitable sortable"  
 
|-
== Turbulence properties ==
{| class="wikitable"
|- Style="font-weight:bold; "
! Parameter name
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| EPSI
| <math>\varepsilon</math>
| <math>\epsilon</math>
| The rate of dissipation of turbulent kinetic energy per unit mass by viscosity
| Turbulent kinetic energy dissipation
|
| tke_dissipation
| <math>\mathrm{W\, kg^{-1}}</math>
|
|-
| W/kg
| <math>B</math>
| Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy.
| <math>B= \frac{g}{\rho} \overline{\rho'w'} </math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>P</math>
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>.
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>R_f</math>
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.
| <math>R_f = \frac{B}{P}</math>
|
|-
|-
| RI
| <math>\Gamma</math>
| <math>Ri</math>
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>.
| Richardson number
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
| richardson_number
| <math> Ri = \frac{N^2}{S^2}</math>
|  
|  
|-
|-
| RI_F
| <math>R_i</math>
| <math>Ri_f</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| Flux gradient Richardson number
| <math>R_i = \frac{N^2}{S^2} </math>
| flux_grad_richardson_number
| <math> \frac{B}{P} </math> or Ivey & Immerger?
|  
|  
|-
|-
| Krho
| <math>\kappa_{\rho}</math>
| <math>\kappa_\rho</math>
| Turbulent eddy diffusivity via the Osborn (1980) model
| Turbulent diffusivity
| <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math>  
| turbulent_diffusivity
| <math>\mathrm{m^2\, s^{-1}}</math>
| <math> \kappa = \Gamma \epsilon N^{-2} </math>
|-
| m<math>^2</math>s<math>^{-1}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}
</div>


== Fluid properties and background gradients for turbulence calculations ==
== Fluid properties and background gradients for turbulence calculations ==
{| class="wikitable"
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
|- Style="font-weight:bold; "
 
! Parameter Name
{| class="wikitable sortable"  
|-
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| S
| <math>S_P</math>
| Practical salinity
|
| <math> - </math>
|-
| <math>T</math>
| Temperature
|
| <math> \mathrm{^{\circ}C } </math>
|-
| <math>P</math>
| Pressure
|
| <math>\mathrm{dbar} </math>
|-
| <math>\rho</math>
| Density of water
| <math> \rho = \rho\left(T,S_a,P \right)</math>
| <math>\mathrm{kg\, m^{-3}} </math>
|-
| <math>\alpha</math>
| Temperature coefficient of expansion
| <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math>
| <math> \mathrm{K^{-1}}</math>
|-
| <math>\beta</math>
| Saline coefficient of contraction
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
|
|-
| <math>S</math>
| <math>S</math>
| Background velocity shear
| Background velocity shear
| background_velocity_shear
| <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math>
| <math> S = \frac{\partial |U|}{\partial z}</math>
| <math> \mathrm{s^{-1}} </math>
| s<math>^{-1}</math>
|-
|-
| KVISC35
| <math> \nu_{35} </math>
| <math>\nu</math>
| Temperature dependent kinematic viscosity of seawater at a practical salinity of 35
| Kinematic viscosity of water for seawater at 35 and 20 <math>^o</math>C
| <math> \sim 1\times 10^{-6} </math>
| seawater_kinematic_viscosity_at_35psu
| <math> \mathrm{m^2\, s^{-1} } </math>
| <math> 1\times 10^{-6}</math>
| m2/s
|-
|-
| N
| <math>\nu_{00}</math>
| <math>N</math>
| Temperature dependent kinematic viscosity of freshwater
| <math>\sim 1\times 10^{-6} </math>
| <math>\mathrm{m^2\, s^{-1} } </math>
|-
| <math>\Gamma_a </math>
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| <math>\sim 1\times 10^{-4}</math>
| <math>\mathrm{K\, dbar^{-1} } </math>
|-
| <math>N </math>
| Background stratification, i.e buoyancy frequency
| Background stratification, i.e buoyancy frequency
| background_buoyancy_frequency
| <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math>
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| <math>\mathrm{rad\, s^{-1} } </math>
| rad/s
|}
|}
</div>


== Theoretical Length and Time Scales ==
== Theoretical Length and Time Scales ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">


{| class="wikitable"
{| class="wikitable sortable"  
|- Style="font-weight:bold; "
|-
! Parameter
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| Tn
| <math>\tau_N</math>
| <math>\tau_N</math>
| Buoyancy timescale
| Buoyancy timescale
| buoyancy_time_scale
| <math> \tau_N = \frac{1}{N}</math>
| <math> \tau_N = \frac{2\pi}{N}</math>
| <math> \mathrm{s} </math>
| s
|-
| <math>T_N</math>
| Buoyancy period
| <math> T_N = \frac{2\pi}{N}</math>
| <math> \mathrm{s} </math>
|-
|-
| L_E
| <math>L_E</math>
| <math>L_E</math>
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Eliison_lenght_scale
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| m  
| <math> \mathrm{m} </math>
|-
|-
| L_RHO
| <math> L_Z</math>
| <math> L_\rho</math>
| Boundary (law of the wall) length scale
| Density length scale
| <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant
| density_length_scale
| <math> \mathrm{m} </math>
| <math> L_\rho </math>
| m
|-
|-
| L_S
| <math>L_S</math>
| <math>L_S</math>
| Corssin length scale
| Corssin length scale
| Corssin_shear_length_scale
| <math> L_S = \sqrt{\varepsilon/S^3} </math>
| <math> L_S = \sqrt{\epsilon/S^3} </math>
| <math> \mathrm{m} </math>
| m
|-
|-
| L_K
| <math>L_K</math>
| <math>\eta</math>
| Kolmogorov length scale (smallest overturns)
| Kolmogorov length scale (smallest overturns)
| Kolmogorov_length_scale
| <math>L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
| <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math>
| <math> \mathrm{m} </math>
| m
|-
|-
| L_O
| <math>L_o</math>
| <math>L_o</math>
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| Ozmidov_stratification_length_scale
| <math>L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2}</math>
| <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math>
| <math> \mathrm{m} </math>
| m  
|-
| L_T
| <math>L_T</math>
| <math>L_T</math>
| Thorp length scale
| Thorpe length scale
| Thorpe_stratification_length_scale
| <math>L_T</math>
| <math>L_T</math>
| m  
| <math> \mathrm{m} </math>
|-
| <math>z_w</math>
| Distance from a boundary
| <math>z_w</math>
| <math> \mathrm{m} </math>
|}
|}
</div>


== Turbulence Spectrum ==
== Turbulence Spectrum ==
<div class="mw-collapsible mw-collapsed" data-collapsetext="Collapse" data-expandtext="Expand">
These variables are used to express the [[Turbulence spectrum]] expected shapes.


Taylor's Frozen Turbulence for converting temporal to spatial measurements <math>\left(\bar{u}_1\frac{\partial
}{\partial{x}} = \frac{\partial}{\partial{t}}\right)</math>
* Missing the y-axi variable. CEB proposes:
** <math>\Psi_{variable}</math> for model/theoretical spectrum of variable e.g., du/dx or u
** <math>\Phi_{variable}</math> for observed spectrum of variable e.g., du/dx or u
* Lowest frequency and wavenumber resolvable


{| class="wikitable"
{| class="wikitable sortable"
|- Style="font-weight:bold; "
|- Style="font-weight:bold; "
! Symbol
! Symbol
Line 219: Line 259:
| Sampling interval
| Sampling interval
| <math> \frac{1}{f_s} </math>
| <math> \frac{1}{f_s} </math>
| s
| <math> \mathrm{s} </math>
|-
| <math>f_s</math>
| Sampling rate
| <math>f_s=\frac{1}{\Delta t} </math>
| <math> \mathrm{s^{-1}} </math>
|-
|-
| <math>\Delta s</math>
| <math>\Delta s</math>
| Sampling volume dimension
| Sample spacing
|
| <math> \Delta s = U_P \Delta t </math>
| m
| <math> \mathrm{m} </math>
|-
| <math>\Delta l</math>
| Linear dimension of sampling volume (instrument dependent)
|  
| <math> \mathrm{m} </math>
|-
|-
| <math>f</math>
| <math>f</math>
| Frequency
| Cyclic frequency
| <math>\frac{\omega}{2\pi}</math>
| <math>f=\frac{\omega}{2\pi}</math>
| Hz
| <math> \mathrm{Hz} </math>
|-
| <math>\omega</math>
| Angular frequency
| <math>\omega = 2\pi f</math>
| <math> \mathrm{rad\, s^{-1}} </math>
|-
|-
| <math>f_n</math>
| <math>f_N</math>
| Nyquist frequency
| Nyquist frequency
| <math>f_n=0.5f_s</math>
| <math>f_N=0.5f_s</math>
| Hz
| <math> \mathrm{Hz} </math>
|-
| <math>f_s</math>
| Sampling frequency
| <math>f_s=\frac{1}{\Delta t} </math>
| Hz
|-
|-
| <math>k</math>
| <math>k</math>
| Wavenumbers (angular)
| Cyclic wavenumber
| <math>k=\frac{f}{\bar{u}}=2\pi\hat{k}</math>
| <math>k=\frac{f}{U_P}</math>
| rad/m
| <math> \mathrm{cpm} </math>
|-
|-
| <math>\hat{k}</math>
| <math>\hat{k}</math>
| Wavenumbers
| Angular wavenumber
| <math>\hat{k}=\frac{k}{2\pi}</math>
| <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math>
| cpm
| <math> \mathrm{rad\, m^{-1}} </math>
|-
| <math>\tilde{k}</math>
| Normalized wavenumber
| e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math>
| -
|-
| <math>\tilde{\Phi}</math>
| Normalized velocity spectrum
| e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math>
| -
|-
| <math>\tilde{\Psi}</math>
| Normalized shear spectrum
| e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math>
| -
|-
| <math>k_\Delta</math>
| Nyquist wavenumber, based on sampling volume size <math>\Delta l</math>
| <math>k_\Delta=\frac{0.5}{\Delta l}</math>
| <math> \mathrm{cpm} </math>
|-
|-
| <math>\hat{k}_\Delta</math>
| <math>k_N</math>
| Nyquist wavenumber, based on sampling volume's size <math>\Delta l</math>
| Nyquist wavenumber, via Taylor's hypothesis
| <math>\hat{k}_\Delta=\frac{0.5}{\Delta l}</math>
| <math>k_N=\frac{f_N}{U_P}</math>
| cpm
| <math> \mathrm{cpm} </math>
|-
|-
| <math>\hat{k}_n</math>
| <math>\Psi(k)</math>
| Nyquist wavenumber, via Taylor's hypothesis (temporal measurements)
| Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum.
| <math>\hat{k}_n=\frac{f_n}{u}</math>
|  
| cpm
| <math> \mathrm{s^{-2}\, cpm^{-1}}</math>
|-
|-
| <math>\omega</math>
| <math>\Phi(k)</math>  
| Angular frequency
| Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum.
| <math>2\pi f</math>
|
| rad/s
| <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math>
|}
|}
</div>


== OceanObs CF variables and  ==
[[Category:Glossary]]

Latest revision as of 15:09, 2 June 2022


Background (total) velocity

Symbol Description Units
[math]\displaystyle{ u }[/math] zonal or longitudinal component of velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ v }[/math] meridional or transverse component of velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ w }[/math] vertical component of velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ u_e }[/math] error velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
V velocity perpendicular to mean flow [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ W_d }[/math] Profiler fall speed [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ U_P }[/math] Flow speed past sensor [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
b Along-beam velocity from acoustic Doppler sensor [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ b^{\prime} }[/math] Along-beam velocity from acoustic Doppler sensor with background flow deducted [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ \delta{z} }[/math] Vertical size of measurement bin for acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
r Along-beam distance from acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \delta{r}_0 }[/math] Along-beam bin size for acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \delta{r} }[/math] Along-beam bin separation for acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \theta }[/math] Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor [math]\displaystyle{ ^{\circ} }[/math]

Turbulence properties

Symbol Description Eqn Units
[math]\displaystyle{ \varepsilon }[/math] The rate of dissipation of turbulent kinetic energy per unit mass by viscosity [math]\displaystyle{ \mathrm{W\, kg^{-1}} }[/math]
[math]\displaystyle{ B }[/math] Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. [math]\displaystyle{ B= \frac{g}{\rho} \overline{\rho'w'} }[/math] [math]\displaystyle{ \mathrm{W\, kg^{-1}} }[/math]
[math]\displaystyle{ P }[/math] The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example [math]\displaystyle{ P = -\overline{u'w'}\frac{\partial U}{\partial z} }[/math] . The production is balanced by the rate of dissipation turbulence kinetic energy, [math]\displaystyle{ \varepsilon }[/math], and the production of potential energy by the buoyancy flux, [math]\displaystyle{ B }[/math]. [math]\displaystyle{ P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B }[/math] [math]\displaystyle{ \mathrm{W\, kg^{-1}} }[/math]
[math]\displaystyle{ R_f }[/math] Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. [math]\displaystyle{ R_f = \frac{B}{P} }[/math]
[math]\displaystyle{ \Gamma }[/math] "Mixing coefficient"; The ratio of the rate of production of potential energy, [math]\displaystyle{ B }[/math], to the rate of dissipation of kinetic energy, [math]\displaystyle{ \varepsilon }[/math]. [math]\displaystyle{ \Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f} }[/math]
[math]\displaystyle{ R_i }[/math] (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared [math]\displaystyle{ R_i = \frac{N^2}{S^2} }[/math]
[math]\displaystyle{ \kappa_{\rho} }[/math] Turbulent eddy diffusivity via the Osborn (1980) model [math]\displaystyle{ \kappa_{\rho} = \Gamma \varepsilon N^{-2} }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-1}} }[/math]
[math]\displaystyle{ D_{ll} }[/math] Second-order longitudinal structure function [math]\displaystyle{ D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-2}} }[/math]

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
[math]\displaystyle{ S_P }[/math] Practical salinity [math]\displaystyle{ - }[/math]
[math]\displaystyle{ T }[/math] Temperature [math]\displaystyle{ \mathrm{^{\circ}C } }[/math]
[math]\displaystyle{ P }[/math] Pressure [math]\displaystyle{ \mathrm{dbar} }[/math]
[math]\displaystyle{ \rho }[/math] Density of water [math]\displaystyle{ \rho = \rho\left(T,S_a,P \right) }[/math] [math]\displaystyle{ \mathrm{kg\, m^{-3}} }[/math]
[math]\displaystyle{ \alpha }[/math] Temperature coefficient of expansion [math]\displaystyle{ \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T} }[/math] [math]\displaystyle{ \mathrm{K^{-1}} }[/math]
[math]\displaystyle{ \beta }[/math] Saline coefficient of contraction [math]\displaystyle{ \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P} }[/math]
[math]\displaystyle{ S }[/math] Background velocity shear [math]\displaystyle{ S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} }[/math] [math]\displaystyle{ \mathrm{s^{-1}} }[/math]
[math]\displaystyle{ \nu_{35} }[/math] Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 [math]\displaystyle{ \sim 1\times 10^{-6} }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-1} } }[/math]
[math]\displaystyle{ \nu_{00} }[/math] Temperature dependent kinematic viscosity of freshwater [math]\displaystyle{ \sim 1\times 10^{-6} }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-1} } }[/math]
[math]\displaystyle{ \Gamma_a }[/math] Adiabatic temperature gradient -- salinity, temperature and pressure dependent [math]\displaystyle{ \sim 1\times 10^{-4} }[/math] [math]\displaystyle{ \mathrm{K\, dbar^{-1} } }[/math]
[math]\displaystyle{ N }[/math] Background stratification, i.e buoyancy frequency [math]\displaystyle{ N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] }[/math] [math]\displaystyle{ \mathrm{rad\, s^{-1} } }[/math]

Theoretical Length and Time Scales

Symbol Description Eqn Units
[math]\displaystyle{ \tau_N }[/math] Buoyancy timescale [math]\displaystyle{ \tau_N = \frac{1}{N} }[/math] [math]\displaystyle{ \mathrm{s} }[/math]
[math]\displaystyle{ T_N }[/math] Buoyancy period [math]\displaystyle{ T_N = \frac{2\pi}{N} }[/math] [math]\displaystyle{ \mathrm{s} }[/math]
[math]\displaystyle{ L_E }[/math] Ellison length scale (limit of vertical displacement without irreversible mixing) [math]\displaystyle{ L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_Z }[/math] Boundary (law of the wall) length scale [math]\displaystyle{ L_Z=0.39z_w }[/math] with 0.39 being von Kármán's constant [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_S }[/math] Corssin length scale [math]\displaystyle{ L_S = \sqrt{\varepsilon/S^3} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_K }[/math] Kolmogorov length scale (smallest overturns) [math]\displaystyle{ L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_o }[/math] Ozmidov length scale, measure of largest overturns in a stratified fluid [math]\displaystyle{ L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_T }[/math] Thorpe length scale [math]\displaystyle{ L_T }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ z_w }[/math] Distance from a boundary [math]\displaystyle{ z_w }[/math] [math]\displaystyle{ \mathrm{m} }[/math]

Turbulence Spectrum

These variables are used to express the Turbulence spectrum expected shapes.


Symbol Description Eqn Units
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] [math]\displaystyle{ \mathrm{s} }[/math]
[math]\displaystyle{ f_s }[/math] Sampling rate [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] [math]\displaystyle{ \mathrm{s^{-1}} }[/math]
[math]\displaystyle{ \Delta s }[/math] Sample spacing [math]\displaystyle{ \Delta s = U_P \Delta t }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \Delta l }[/math] Linear dimension of sampling volume (instrument dependent) [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ f }[/math] Cyclic frequency [math]\displaystyle{ f=\frac{\omega}{2\pi} }[/math] [math]\displaystyle{ \mathrm{Hz} }[/math]
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ \omega = 2\pi f }[/math] [math]\displaystyle{ \mathrm{rad\, s^{-1}} }[/math]
[math]\displaystyle{ f_N }[/math] Nyquist frequency [math]\displaystyle{ f_N=0.5f_s }[/math] [math]\displaystyle{ \mathrm{Hz} }[/math]
[math]\displaystyle{ k }[/math] Cyclic wavenumber [math]\displaystyle{ k=\frac{f}{U_P} }[/math] [math]\displaystyle{ \mathrm{cpm} }[/math]
[math]\displaystyle{ \hat{k} }[/math] Angular wavenumber [math]\displaystyle{ \hat{k}=\frac{\omega}{U_P} = 2\pi k }[/math] [math]\displaystyle{ \mathrm{rad\, m^{-1}} }[/math]
[math]\displaystyle{ \tilde{k} }[/math] Normalized wavenumber e.g., [math]\displaystyle{ \tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4} }[/math] -
[math]\displaystyle{ \tilde{\Phi} }[/math] Normalized velocity spectrum e.g., [math]\displaystyle{ \tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k) }[/math] -
[math]\displaystyle{ \tilde{\Psi} }[/math] Normalized shear spectrum e.g., [math]\displaystyle{ \tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k) }[/math] -
[math]\displaystyle{ k_\Delta }[/math] Nyquist wavenumber, based on sampling volume size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ k_\Delta=\frac{0.5}{\Delta l} }[/math] [math]\displaystyle{ \mathrm{cpm} }[/math]
[math]\displaystyle{ k_N }[/math] Nyquist wavenumber, via Taylor's hypothesis [math]\displaystyle{ k_N=\frac{f_N}{U_P} }[/math] [math]\displaystyle{ \mathrm{cpm} }[/math]
[math]\displaystyle{ \Psi(k) }[/math] Shear spectrum. Use [math]\displaystyle{ \Psi_1 }[/math], [math]\displaystyle{ \Psi_2 }[/math] to distinguish the orthogonal components of the shear. Use [math]\displaystyle{ \Psi_N }[/math] for the Nasmyth spectrum, [math]\displaystyle{ \Psi_{PK} }[/math] for the Panchev-Kesich spectrum and [math]\displaystyle{ \Psi_L }[/math] for the Lueck spectrum. [math]\displaystyle{ \mathrm{s^{-2}\, cpm^{-1}} }[/math]
[math]\displaystyle{ \Phi(k) }[/math] Velocity spectrum. Use [math]\displaystyle{ \Phi_u }[/math], [math]\displaystyle{ \Phi_v }[/math], [math]\displaystyle{ \Phi_v }[/math], or [math]\displaystyle{ \Phi_1 }[/math], [math]\displaystyle{ \Phi_2 }[/math] , [math]\displaystyle{ \Phi_3 }[/math] for the different orthogonal components of the velocity. Use [math]\displaystyle{ \Phi_K }[/math] for the Kolmogorov spectrum. [math]\displaystyle{ \mathrm{m^2\, s^{-2}\, cpm^{-1}} }[/math]