Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
 
(20 intermediate revisions by 3 users not shown)
Line 52: Line 52:
| r
| r
| Along-beam distance from acoustic Doppler sensor
| Along-beam distance from acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}_0</math>
| Along-beam bin size for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
| <math> \delta{r}</math>  
| <math> \delta{r}</math>  
| Along-beam bin size for acoustic Doppler sensor
| Along-beam bin separation for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
Line 79: Line 83:
| <math>\mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| Ri
| <math>B</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy.
| <math>R_i = \frac{N^2}{S^2} </math>
| <math>B= \frac{g}{\rho} \overline{\rho'w'} </math>
|  
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>P</math>
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>.
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>  
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| Ri<math> _f</math>
| <math>R_f</math>
| Flux Richardson number; the ratio of the buoyancy flux to the shear production of turbulent kinetic energy
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.
| <math>R_f = \frac{B}{P}</math>  
| <math>R_f = \frac{B}{P}</math>  
|  
|  
|-
|-
| <math>\Gamma</math>
| <math>\Gamma</math>
| Mixing efficiency; the ratio of the buoyancy flux to the rate of dissipation of turbulent kinetic energy
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>.
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
|
|-
| <math>R_i</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| <math>R_i = \frac{N^2}{S^2} </math>
|  
|  
|-
|-
Line 99: Line 113:
| <math>\mathrm{m^2\, s^{-1}}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
|-
|-
| <math>D_{LL}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| Second-order longitudinal structure function
| <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}
Line 143: Line 157:
| <math>\beta</math>
| <math>\beta</math>
| Saline coefficient of contraction
| Saline coefficient of contraction
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math>
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
|  
|  
|-
|-
| <math>S</math>
| <math>S</math>
| Background velocity shear
| Background velocity shear
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math>
| <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math>
| <math> \mathrm{s^{-1}} </math>
| <math> \mathrm{s^{-1}} </math>
|-
|-
Line 315: Line 329:
| Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum.
| Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum.
|  
|  
| <math> \mathrm{(1/s)}^2/\mathrm{cpm} </math>
| <math> \mathrm{s^{-2}\, cpm^{-1}}</math>
|-
|-
| <math>\Phi(k)</math>  
| <math>\Phi(k)</math>  
| Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum.
| Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum.
|  
|  
| <math> \mathrm{(m/s)}^2/\mathrm{cpm} </math>
| <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math>
|}
|}
</div>
</div>

Latest revision as of 15:09, 2 June 2022


Background (total) velocity

Symbol Description Units
u zonal or longitudinal component of velocity ms1
v meridional or transverse component of velocity ms1
w vertical component of velocity ms1
ue error velocity ms1
V velocity perpendicular to mean flow ms1
Wd Profiler fall speed ms1
UP Flow speed past sensor ms1
b Along-beam velocity from acoustic Doppler sensor ms1
b Along-beam velocity from acoustic Doppler sensor with background flow deducted ms1
δz Vertical size of measurement bin for acoustic Doppler sensor m
r Along-beam distance from acoustic Doppler sensor m
δr0 Along-beam bin size for acoustic Doppler sensor m
δr Along-beam bin separation for acoustic Doppler sensor m
θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor

Turbulence properties

Symbol Description Eqn Units
ε The rate of dissipation of turbulent kinetic energy per unit mass by viscosity Wkg1
B Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. B=gρρw Wkg1
P The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example P=uwUz . The production is balanced by the rate of dissipation turbulence kinetic energy, ε, and the production of potential energy by the buoyancy flux, B. P=uwUz=ε+B Wkg1
Rf Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. Rf=BP
Γ "Mixing coefficient"; The ratio of the rate of production of potential energy, B, to the rate of dissipation of kinetic energy, ε. Γ=Bε=Rf1Rf
Ri (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared Ri=N2S2
κρ Turbulent eddy diffusivity via the Osborn (1980) model κρ=ΓεN2 m2s1
Dll Second-order longitudinal structure function Dll=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
SP Practical salinity
T Temperature C
P Pressure dbar
ρ Density of water ρ=ρ(T,Sa,P) kgm3
α Temperature coefficient of expansion α=1ρρT K1
β Saline coefficient of contraction β=1ρρSP
S Background velocity shear S=[(Uz)2+(Vz)2]1/2 s1
ν35 Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 1×106 m2s1
ν00 Temperature dependent kinematic viscosity of freshwater 1×106 m2s1
Γa Adiabatic temperature gradient -- salinity, temperature and pressure dependent 1×104 Kdbar1
N Background stratification, i.e buoyancy frequency N2=g[α(Γa+Tz)βSPz] rads1

Theoretical Length and Time Scales

Symbol Description Eqn Units
τN Buoyancy timescale τN=1N s
TN Buoyancy period TN=2πN s
LE Ellison length scale (limit of vertical displacement without irreversible mixing) LE=ρ'21/2ρ/z m
LZ Boundary (law of the wall) length scale LZ=0.39zw with 0.39 being von Kármán's constant m
LS Corssin length scale LS=ε/S3 m
LK Kolmogorov length scale (smallest overturns) LK=(ν3ε)1/4 m
Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Lo=(εN3)1/2 m
LT Thorpe length scale LT m
zw Distance from a boundary zw m

Turbulence Spectrum

These variables are used to express the Turbulence spectrum expected shapes.


Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
k~ Normalized wavenumber e.g., k~=kLK,LK=(ν3/ε)1/4 -
Φ~ Normalized velocity spectrum e.g., Φ~u(k~)=(ϵν5)1/4Φu(k) -
Ψ~ Normalized shear spectrum e.g., Ψ~(k~)=LK2(ϵν5)1/4Ψ(k) -
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm
Ψ(k) Shear spectrum. Use Ψ1, Ψ2 to distinguish the orthogonal components of the shear. Use ΨN for the Nasmyth spectrum, ΨPK for the Panchev-Kesich spectrum and ΨL for the Lueck spectrum. s2cpm1
Φ(k) Velocity spectrum. Use Φu, Φv, Φv, or Φ1, Φ2 , Φ3 for the different orthogonal components of the velocity. Use ΦK for the Kolmogorov spectrum. m2s2cpm1