Nomenclature: Difference between revisions
From Atomix
Yuengdjern (talk | contribs) No edit summary |
|||
(17 intermediate revisions by 3 users not shown) | |||
Line 52: | Line 52: | ||
| r | | r | ||
| Along-beam distance from acoustic Doppler sensor | | Along-beam distance from acoustic Doppler sensor | ||
| <math>\mathrm{m}</math> | |||
|- | |||
| <math> \delta{r}_0</math> | |||
| Along-beam bin size for acoustic Doppler sensor | |||
| <math>\mathrm{m}</math> | | <math>\mathrm{m}</math> | ||
|- | |- | ||
| <math> \delta{r}</math> | | <math> \delta{r}</math> | ||
| Along-beam bin | | Along-beam bin separation for acoustic Doppler sensor | ||
| <math>\mathrm{m}</math> | | <math>\mathrm{m}</math> | ||
|- | |- | ||
Line 79: | Line 83: | ||
| <math>\mathrm{W\, kg^{-1}}</math> | | <math>\mathrm{W\, kg^{-1}}</math> | ||
|- | |- | ||
| <math> | | <math>B</math> | ||
| | | Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. | ||
| <math> | | <math>B= \frac{g}{\rho} \overline{\rho'w'} </math> | ||
| | | <math>\mathrm{W\, kg^{-1}}</math> | ||
|- | |||
| <math>P</math> | |||
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>. | |||
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math> | |||
| <math>\mathrm{W\, kg^{-1}}</math> | |||
|- | |- | ||
| <math>R_f</math> | | <math>R_f</math> | ||
| Flux Richardson number; the ratio of the buoyancy flux expended | | Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. | ||
| <math>R_f = \frac{ | | <math>R_f = \frac{B}{P}</math> | ||
| | | | ||
|- | |- | ||
| <math>\Gamma</math> | | <math>\Gamma</math> | ||
| " | | "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>. | ||
| <math>\Gamma = \frac{R_f}{1-R_f}</math> | | <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math> | ||
| | |||
|- | |||
| <math>R_i</math> | |||
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared | |||
| <math>R_i = \frac{N^2}{S^2} </math> | |||
| | | | ||
|- | |- | ||
Line 99: | Line 113: | ||
| <math>\mathrm{m^2\, s^{-1}}</math> | | <math>\mathrm{m^2\, s^{-1}}</math> | ||
|- | |- | ||
| <math>D_{ | | <math>D_{ll}</math> | ||
| Second-order longitudinal structure function | | Second-order longitudinal structure function | ||
| <math>D_{ | | <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math> | ||
| <math>\mathrm{m^2\, s^{-2}}</math> | | <math>\mathrm{m^2\, s^{-2}}</math> | ||
|} | |} | ||
Line 143: | Line 157: | ||
| <math>\beta</math> | | <math>\beta</math> | ||
| Saline coefficient of contraction | | Saline coefficient of contraction | ||
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial | | <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math> | ||
| | | | ||
|- | |- | ||
| <math>S</math> | | <math>S</math> | ||
| Background velocity shear | | Background velocity shear | ||
| <math> S = \left | | <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math> | ||
| <math> \mathrm{s^{-1}} </math> | | <math> \mathrm{s^{-1}} </math> | ||
|- | |- |
Latest revision as of 15:09, 2 June 2022