Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
 
(17 intermediate revisions by 3 users not shown)
Line 52: Line 52:
| r
| r
| Along-beam distance from acoustic Doppler sensor
| Along-beam distance from acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}_0</math>
| Along-beam bin size for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
| <math> \delta{r}</math>  
| <math> \delta{r}</math>  
| Along-beam bin size for acoustic Doppler sensor
| Along-beam bin separation for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
Line 79: Line 83:
| <math>\mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| <math>R_i</math>
| <math>B</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy.
| <math>R_i = \frac{N^2}{S^2} </math>
| <math>B= \frac{g}{\rho} \overline{\rho'w'} </math>
|  
| <math>\mathrm{W\, kg^{-1}}</math>
|-
| <math>P</math>
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>.
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>  
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| <math>R_f</math>
| <math>R_f</math>
| Flux Richardson number; the ratio of the buoyancy flux expended to change the potential energy to the shear production of turbulent kinetic energy. It is also referred to as "Mixing efficiency". Mixing efficiency is the ratio of the net change in potential energy due to mixing to the energy expended in producing the mixing.
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.  
| <math>R_f = \frac{-B}{P}</math>  
| <math>R_f = \frac{B}{P}</math>  
|  
|  
|-
|-
| <math>\Gamma</math>
| <math>\Gamma</math>
| "Efficiency factor"; indicates the conversion efficiency of turbulent kinetic energy into potential energy of the system
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>.
| <math>\Gamma = \frac{R_f}{1-R_f}</math>  
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>
|
|-
| <math>R_i</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| <math>R_i = \frac{N^2}{S^2} </math>
|  
|  
|-
|-
Line 99: Line 113:
| <math>\mathrm{m^2\, s^{-1}}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
|-
|-
| <math>D_{LL}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| Second-order longitudinal structure function
| <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}
Line 143: Line 157:
| <math>\beta</math>
| <math>\beta</math>
| Saline coefficient of contraction
| Saline coefficient of contraction
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math>
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
|  
|  
|-
|-
| <math>S</math>
| <math>S</math>
| Background velocity shear
| Background velocity shear
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math>
| <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math>
| <math> \mathrm{s^{-1}} </math>
| <math> \mathrm{s^{-1}} </math>
|-
|-

Latest revision as of 15:09, 2 June 2022


Background (total) velocity

Turbulence properties

Fluid properties and background gradients for turbulence calculations

Theoretical Length and Time Scales

Turbulence Spectrum