Velocity inertial subrange model: Difference between revisions
Line 31: | Line 31: | ||
== Inertial subrange for flows influenced by surface waves == | == Inertial subrange for flows influenced by surface waves == | ||
Need to add equations and figures from Lumley & Terray | Need to add equations and figures from Lumley & Terray<ref name="Lumley_Terray"> | ||
{{Cite journal | |||
|authors=J. Lumley and E. Terray | |||
|journal_or_publisher=J. Phys. Oceanogr | |||
|paper_or_booktitle=Kinematics of turbulence convected by a random wave field | |||
|year=1983 | |||
|doi= 10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2 | |||
}} | |||
</ref> | |||
== Notes == | == Notes == | ||
<references /> | <references /> |
Revision as of 19:55, 11 November 2021
Short definition of Velocity inertial subrange model |
---|
The inertial subrange separates the energy-containing production range from the viscous dissipation range. |
This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.
Inertial subrange for steady-flows
This theoretical model predicts the spectral shape of velocities in wavenumber space.
[math]\displaystyle{ \Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3} }[/math]
Here [math]\displaystyle{ \hat{k} }[/math] is expressed in rad/m and [math]\displaystyle{ Vj }[/math] represents the velocities [math]\displaystyle{ V }[/math] in direction [math]\displaystyle{ j }[/math]. [math]\displaystyle{ C_k }[/math] is the empirical Kolmogorov universal constant of C = 1.5 [1]. Amongst the three direction, the spectra deviates by the constant [math]\displaystyle{ a_j }[/math]: [2]
- In the longitudinal direction, i.e., the direction of mean advection (j=1), [math]\displaystyle{ a_1=\frac{18}{55} }[/math]
- In the other directions [math]\displaystyle{ a_2=a_3=\frac{4}{3}a_1 }[/math]
Inertial subrange for flows influenced by surface waves
Need to add equations and figures from Lumley & Terray[3]
Notes
- ↑ K. R. Sreenivasan. 1995. On the universality of the Kolmogorov constant. Phys. Fluids. doi:10.1063/1.868656
- ↑ S.B Pope. 2000. Turbulent flows. Cambridge Univ. Press. doi:10.1017/CBO9780511840531
- ↑ J. Lumley and E. Terray. 1983. Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr. doi:<2000:KOTCBA>2.0.CO;2 10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2