Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
Line 32: Line 32:
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| rad/s
| rad/s
|-
| <math>\tau_N</math>
| Buoyancy timescale
| <math> \tau_N = \frac{2\pi}{N}</math>
| s
|-
| <math>\eta</math>
| Kolmogorov length scale (smallest overturns)
| <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math>
| m [per rad?]
|-
| <math>L_o</math>
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math>
| m [per rad?]
|}
|}


Line 58: Line 43:
! Units
! Units
|-
|-
| <math>\epsilon</math>
| <math>\tau_N</math>
| Turbulent kinetic energy dissipation
| Buoyancy timescale
|
| <math> \tau_N = \frac{2\pi}{N}</math>
| W/kg
| s
|-
|-
| <math>\nu</math>
| <math>L_E</math>
| Viscosity of water for seawater at 35psu and 20 oC
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| <math> 1\times 10^{-6}</math>
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overbar{\rho}/\partial z}</math>
| m2/s
| m
|-
|-
| <math>N</math>
| <math>L_\rho/math>
| Buoyancy frequency
| density length scale
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| <math> L_\rho </math>
| rad/s
| m
|-
|-
| <math>L_s/math>
| Corssin shear length scale (turbulence draws energy from uniform background shear)
| <math> L_C = \sqrt{\epsilon/S^3} </math>
| m
|-
| <math>\tau_N</math>
| <math>\tau_N</math>
| Buoyancy timescale
| Buoyancy timescale

Revision as of 13:29, 31 March 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Turbulence properties

Symbol Description Eqn Units
<math>\epsilon</math> Turbulent kinetic energy dissipation W/kg
<math>\nu</math> Viscosity of water for seawater at 35psu and 20 oC <math> 1\times 10^{-6}</math> m2/s
<math>N</math> Buoyancy frequency <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math> rad/s

Theoretical Length and Time Scales

Symbol Description Eqn Units
<math>\tau_N</math> Buoyancy timescale <math> \tau_N = \frac{2\pi}{N}</math> s
<math>L_E</math> Ellison length scale (limit of vertical displacement without irreversible mixing) <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overbar{\rho}/\partial z}</math> m
<math>L_\rho/math> density length scale <math> L_\rho </math> m
<math>L_s/math> Corssin shear length scale (turbulence draws energy from uniform background shear) <math> L_C = \sqrt{\epsilon/S^3} </math> m
<math>\tau_N</math> Buoyancy timescale <math> \tau_N = \frac{2\pi}{N}</math> s
<math>\eta</math> Kolmogorov length scale (smallest overturns) <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math> m [per rad?]
<math>L_o</math> Ozmidov length scale, measure of largest overturns in a stratified fluid <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math> m [per rad?]

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements <math>\left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right)</math>


  • Missing the y-axi variable. CEB proposes:
    • <math>\Psi_{variable}</math> for model/theoretical spectrum of variable e.g., du/dx or u
    • <math>\Phi_{variable}</math> for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
<math>\Delta t</math> Sampling interval <math> \frac{1}{f_s} </math> s
<math>\Delta s</math> Sampling volume dimension m
<math>f</math> Frequency <math>\frac{\omega}{2\pi}</math> Hz
<math>f_n</math> Nyquist frequency <math>f_n=0.5f_s</math> Hz
<math>f_s</math> Sampling frequency <math>f_s=\frac{1}{\Delta t} </math> Hz
<math>k</math> Wavenumbers (angular) <math>k=\frac{f}{\bar{u}}=2\pi\hat{k}</math> rad/m
<math>\hat{k}</math> Wavenumbers <math>\hat{k}=\frac{k}{2\pi}</math> cpm
<math>\hat{k}_\Delta</math> Nyquist wavenumber, based on sampling volume's size <math>\Delta l</math> <math>\hat{k}_\Delta=\frac{0.5}{\Delta l}</math> cpm
<math>\hat{k}_n</math> Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) <math>\hat{k}_n=\frac{f_n}{u}</math> cpm
<math>\omega</math> Angular frequency <math>2\pi f</math> rad/s

Test