Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
Line 63: Line 63:
| m  
| m  
|-
|-
| <math>\tau_N</math>
| <math>\tau_N</math>
| Buoyancy timescale
| Buoyancy timescale

Revision as of 13:30, 31 March 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Turbulence properties

Symbol Description Eqn Units
[math]\displaystyle{ \epsilon }[/math] Turbulent kinetic energy dissipation W/kg
[math]\displaystyle{ \nu }[/math] Viscosity of water for seawater at 35psu and 20 oC [math]\displaystyle{ 1\times 10^{-6} }[/math] m2/s
[math]\displaystyle{ N }[/math] Buoyancy frequency [math]\displaystyle{ N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}} }[/math] rad/s

Theoretical Length and Time Scales

Symbol Description Eqn Units
[math]\displaystyle{ \tau_N }[/math] Buoyancy timescale [math]\displaystyle{ \tau_N = \frac{2\pi}{N} }[/math] s
[math]\displaystyle{ L_E }[/math] Ellison length scale (limit of vertical displacement without irreversible mixing) [math]\displaystyle{ L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overbar{\rho}/\partial z} }[/math] m
[math]\displaystyle{ L_\rho/math\gt | density length scale | \lt math\gt L_\rho }[/math] m
[math]\displaystyle{ L_s/math\gt | Corssin shear length scale (turbulence draws energy from uniform background shear) | \lt math\gt L_C = \sqrt{\epsilon/S^3} }[/math] m
[math]\displaystyle{ \tau_N }[/math] Buoyancy timescale [math]\displaystyle{ \tau_N = \frac{2\pi}{N} }[/math] s
[math]\displaystyle{ \eta }[/math] Kolmogorov length scale (smallest overturns) [math]\displaystyle{ \eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K} }[/math] m [per rad?]
[math]\displaystyle{ L_o }[/math] Ozmidov length scale, measure of largest overturns in a stratified fluid [math]\displaystyle{ L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2} }[/math] m [per rad?]

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]


  • Missing the y-axi variable. CEB proposes:
    • [math]\displaystyle{ \Psi_{variable} }[/math] for model/theoretical spectrum of variable e.g., du/dx or u
    • [math]\displaystyle{ \Phi_{variable} }[/math] for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] s
[math]\displaystyle{ \Delta s }[/math] Sampling volume dimension m
[math]\displaystyle{ f }[/math] Frequency [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] Hz
[math]\displaystyle{ f_n }[/math] Nyquist frequency [math]\displaystyle{ f_n=0.5f_s }[/math] Hz
[math]\displaystyle{ f_s }[/math] Sampling frequency [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] Hz
[math]\displaystyle{ k }[/math] Wavenumbers (angular) [math]\displaystyle{ k=\frac{f}{\bar{u}}=2\pi\hat{k} }[/math] rad/m
[math]\displaystyle{ \hat{k} }[/math] Wavenumbers [math]\displaystyle{ \hat{k}=\frac{k}{2\pi} }[/math] cpm
[math]\displaystyle{ \hat{k}_\Delta }[/math] Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] cpm
[math]\displaystyle{ \hat{k}_n }[/math] Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] cpm
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ 2\pi f }[/math] rad/s

Test