Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
Line 22: Line 22:
|
|
| W/kg
| W/kg
|-
| <math>Ri</math>
| Richardson number
| <math> Ri = \frac{N^2}{S^2}</math>
|
|-
| <math>Ri_f</math>
| Flux gradient Richardson number
| <math> \frac{B}{P} </math> or Ivey & Immerger?
|
|-
| <math>\kappa</math>
| Turbulent diffusivity
| <math> \kappa = \Gamma \epsilon N^{-2} </math>
| m<math>^2</math>s<math>^{-1}</math>
|}
== Fluid properties and background gradients for turbulence calculations ==
{| class="wikitable"
|- Style="font-weight:bold; "
! Symbol
! Description
! Eqn
! Units
|-
| <math>S</math>
| Background velocity shear
| <math> S = \frac{\partial |U|}{\partial z}</math>
| s<math>^{-1}</math>
|-
|-
| <math>\nu</math>
| <math>\nu</math>
Line 29: Line 58:
|-
|-
| <math>N</math>
| <math>N</math>
| Buoyancy frequency
| Background stratification, i.e buoyancy frequency
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| rad/s
| rad/s
Line 50: Line 79:
| <math>L_E</math>
| <math>L_E</math>
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overbar{\rho}/\partial z}</math>
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| m  
| m  
|-
|-

Revision as of 14:11, 31 March 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Turbulence properties

Symbol Description Eqn Units
[math]\displaystyle{ \epsilon }[/math] Turbulent kinetic energy dissipation W/kg
[math]\displaystyle{ Ri }[/math] Richardson number [math]\displaystyle{ Ri = \frac{N^2}{S^2} }[/math]
[math]\displaystyle{ Ri_f }[/math] Flux gradient Richardson number [math]\displaystyle{ \frac{B}{P} }[/math] or Ivey & Immerger?
[math]\displaystyle{ \kappa }[/math] Turbulent diffusivity [math]\displaystyle{ \kappa = \Gamma \epsilon N^{-2} }[/math] m[math]\displaystyle{ ^2 }[/math]s[math]\displaystyle{ ^{-1} }[/math]

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
[math]\displaystyle{ S }[/math] Background velocity shear [math]\displaystyle{ S = \frac{\partial |U|}{\partial z} }[/math] s[math]\displaystyle{ ^{-1} }[/math]
[math]\displaystyle{ \nu }[/math] Viscosity of water for seawater at 35psu and 20 oC [math]\displaystyle{ 1\times 10^{-6} }[/math] m2/s
[math]\displaystyle{ N }[/math] Background stratification, i.e buoyancy frequency [math]\displaystyle{ N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}} }[/math] rad/s

Theoretical Length and Time Scales

Symbol Description Eqn Units
[math]\displaystyle{ \tau_N }[/math] Buoyancy timescale [math]\displaystyle{ \tau_N = \frac{2\pi}{N} }[/math] s
[math]\displaystyle{ L_E }[/math] Ellison length scale (limit of vertical displacement without irreversible mixing) [math]\displaystyle{ L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z} }[/math] m
[math]\displaystyle{ L_\rho }[/math] Density length scale [math]\displaystyle{ L_\rho }[/math] m
[math]\displaystyle{ L_S }[/math] Corssin length scale [math]\displaystyle{ L_S = \sqrt{\epsilon/S^3} }[/math] m
[math]\displaystyle{ \eta }[/math] Kolmogorov length scale (smallest overturns) [math]\displaystyle{ \eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K} }[/math] m
[math]\displaystyle{ L_o }[/math] Ozmidov length scale, measure of largest overturns in a stratified fluid [math]\displaystyle{ L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2} }[/math] m

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]


  • Missing the y-axi variable. CEB proposes:
    • [math]\displaystyle{ \Psi_{variable} }[/math] for model/theoretical spectrum of variable e.g., du/dx or u
    • [math]\displaystyle{ \Phi_{variable} }[/math] for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] s
[math]\displaystyle{ \Delta s }[/math] Sampling volume dimension m
[math]\displaystyle{ f }[/math] Frequency [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] Hz
[math]\displaystyle{ f_n }[/math] Nyquist frequency [math]\displaystyle{ f_n=0.5f_s }[/math] Hz
[math]\displaystyle{ f_s }[/math] Sampling frequency [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] Hz
[math]\displaystyle{ k }[/math] Wavenumbers (angular) [math]\displaystyle{ k=\frac{f}{\bar{u}}=2\pi\hat{k} }[/math] rad/m
[math]\displaystyle{ \hat{k} }[/math] Wavenumbers [math]\displaystyle{ \hat{k}=\frac{k}{2\pi} }[/math] cpm
[math]\displaystyle{ \hat{k}_\Delta }[/math] Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] cpm
[math]\displaystyle{ \hat{k}_n }[/math] Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] cpm
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ 2\pi f }[/math] rad/s

Test