Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
Line 4: Line 4:
* Dumping a sketch would be useful
* Dumping a sketch would be useful


{| class="wikitable"
|- Style="font-weight:bold; "
! Parameter name
! Symbol
! Description
! Standard long name
! Units
|-
|EAST_VEL
| <math> u </math>
| zonal velocity
| eastward_velocity
| m s-1
|-
|NORTH_VEL
| <math> v </math>
| meridional velocity
| northward_velocity
| m s-1
|-
|UP_VEL
| <math> W </math>
| vertical velocity
| upward_velocity
| m s-1
|-
|ERROR_VEL
| <math> u </math>
| error velocity
| error_velocity
| m s-1
|-
|U_VEL
| <math> U </math>
| velocity parellel to mean flow
| meanflow_velocity
| m s-1
|-
|V_VEL
| <math> V </math>
| velocity perpendicular to mean flow
| crossflow_velocity
| m s-1
|-
|Drop_Speed
| <math> W_d </math>
| Profiler fall speed
| mean_drop_speed
| m s-1
|-
|FlowPast_Speed
| <math> U_fp </math>
| Flow speed past sensor
| mean_velocity_past_turbulence_sensor
| m s-1
|-
|}


== Reynold's Decomposition ==
== Reynold's Decomposition ==
Line 13: Line 70:
{| class="wikitable"
{| class="wikitable"
|- Style="font-weight:bold; "
|- Style="font-weight:bold; "
! Parameter name
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| EPSI
| <math>\epsilon</math>
| <math>\epsilon</math>
| Turbulent kinetic energy dissipation
| Turbulent kinetic energy dissipation
| tke_dissipation
|
|
| W/kg
| W/kg
|-
|-
| RI
| <math>Ri</math>
| <math>Ri</math>
| Richardson number
| Richardson number
| richardson_number
| <math> Ri = \frac{N^2}{S^2}</math>
| <math> Ri = \frac{N^2}{S^2}</math>
|  
|  
|-
|-
| RI_F
| <math>Ri_f</math>
| <math>Ri_f</math>
| Flux gradient Richardson number
| Flux gradient Richardson number
| flux_grad_richardson_number
| <math> \frac{B}{P} </math> or Ivey & Immerger?  
| <math> \frac{B}{P} </math> or Ivey & Immerger?  
|  
|  
|-
|-
| <math>\kappa</math>
| Krho
| <math>\kappa_\rho</math>
| Turbulent diffusivity
| Turbulent diffusivity
| turbulent_diffusivity
| <math> \kappa = \Gamma \epsilon N^{-2} </math>
| <math> \kappa = \Gamma \epsilon N^{-2} </math>
| m<math>^2</math>s<math>^{-1}</math>
| m<math>^2</math>s<math>^{-1}</math>
Line 42: Line 109:
{| class="wikitable"
{| class="wikitable"
|- Style="font-weight:bold; "
|- Style="font-weight:bold; "
! Parameter Name
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| S
| <math>S</math>
| <math>S</math>
| Background velocity shear
| Background velocity shear
| background_velocity_shear
| <math> S = \frac{\partial |U|}{\partial z}</math>
| <math> S = \frac{\partial |U|}{\partial z}</math>
| s<math>^{-1}</math>
| s<math>^{-1}</math>
|-
|-
| KVISC35
| <math>\nu</math>
| <math>\nu</math>
| Viscosity of water for seawater at 35psu and 20 oC
| Kinematic viscosity of water for seawater at 35 and 20 <math>^o</math>C
| seawater_kinematic_viscosity_at_35psu
| <math> 1\times 10^{-6}</math>
| <math> 1\times 10^{-6}</math>
| m2/s
| m2/s
|-
|-
| N
| <math>N</math>
| <math>N</math>
| Background stratification, i.e buoyancy frequency
| Background stratification, i.e buoyancy frequency
| background_buoyancy_frequency
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math>
| rad/s
| rad/s
Line 67: Line 142:
{| class="wikitable"
{| class="wikitable"
|- Style="font-weight:bold; "
|- Style="font-weight:bold; "
! Parameter
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Eqn
! Eqn
! Units
! Units
|-
|-
| Tn
| <math>\tau_N</math>
| <math>\tau_N</math>
| Buoyancy timescale
| Buoyancy timescale
| buoyancy_time_scale
| <math> \tau_N = \frac{2\pi}{N}</math>
| <math> \tau_N = \frac{2\pi}{N}</math>
| s
| s
|-
|-
| L_E
| <math>L_E</math>
| <math>L_E</math>
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Ellison length scale (limit of vertical displacement without irreversible mixing)
| Eliison_lenght_scale
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math>
| m  
| m  
|-
|-
| L_RHO
| <math> L_\rho</math>
| <math> L_\rho</math>
| Density length scale
| Density length scale
| density_length_scale
| <math> L_\rho </math>
| <math> L_\rho </math>
| m
| m
|-
|-
| L_S
| <math>L_S</math>
| <math>L_S</math>
| Corssin length scale  
| Corssin length scale
| Corssin_shear_length_scale
| <math> L_S = \sqrt{\epsilon/S^3} </math>
| <math> L_S = \sqrt{\epsilon/S^3} </math>
| m
| m
|-
|-
| L_K
| <math>\eta</math>
| <math>\eta</math>
| Kolmogorov length scale (smallest overturns)
| Kolmogorov length scale (smallest overturns)
| Kolmogorov_length_scale
| <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math>
| <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math>
| m  
| m  
|-
|-
| L_O
| <math>L_o</math>
| <math>L_o</math>
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| Ozmidov length scale, measure of largest overturns in a stratified fluid
| Ozmidov_stratification_length_scale
| <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math>
| <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math>
| m  
| m  

Revision as of 14:43, 31 March 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful
Parameter name Symbol Description Standard long name Units
EAST_VEL [math]\displaystyle{ u }[/math] zonal velocity eastward_velocity m s-1
NORTH_VEL [math]\displaystyle{ v }[/math] meridional velocity northward_velocity m s-1
UP_VEL [math]\displaystyle{ W }[/math] vertical velocity upward_velocity m s-1
ERROR_VEL [math]\displaystyle{ u }[/math] error velocity error_velocity m s-1
U_VEL [math]\displaystyle{ U }[/math] velocity parellel to mean flow meanflow_velocity m s-1
V_VEL [math]\displaystyle{ V }[/math] velocity perpendicular to mean flow crossflow_velocity m s-1
Drop_Speed [math]\displaystyle{ W_d }[/math] Profiler fall speed mean_drop_speed m s-1
FlowPast_Speed [math]\displaystyle{ U_fp }[/math] Flow speed past sensor mean_velocity_past_turbulence_sensor m s-1

Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI [math]\displaystyle{ \epsilon }[/math] Turbulent kinetic energy dissipation tke_dissipation W/kg
RI [math]\displaystyle{ Ri }[/math] Richardson number richardson_number [math]\displaystyle{ Ri = \frac{N^2}{S^2} }[/math]
RI_F [math]\displaystyle{ Ri_f }[/math] Flux gradient Richardson number flux_grad_richardson_number [math]\displaystyle{ \frac{B}{P} }[/math] or Ivey & Immerger?
Krho [math]\displaystyle{ \kappa_\rho }[/math] Turbulent diffusivity turbulent_diffusivity [math]\displaystyle{ \kappa = \Gamma \epsilon N^{-2} }[/math] m[math]\displaystyle{ ^2 }[/math]s[math]\displaystyle{ ^{-1} }[/math]

Fluid properties and background gradients for turbulence calculations

Parameter Name Symbol Description Standard long name Eqn Units
S [math]\displaystyle{ S }[/math] Background velocity shear background_velocity_shear [math]\displaystyle{ S = \frac{\partial |U|}{\partial z} }[/math] s[math]\displaystyle{ ^{-1} }[/math]
KVISC35 [math]\displaystyle{ \nu }[/math] Kinematic viscosity of water for seawater at 35 and 20 [math]\displaystyle{ ^o }[/math]C seawater_kinematic_viscosity_at_35psu [math]\displaystyle{ 1\times 10^{-6} }[/math] m2/s
N [math]\displaystyle{ N }[/math] Background stratification, i.e buoyancy frequency background_buoyancy_frequency [math]\displaystyle{ N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}} }[/math] rad/s

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
Tn [math]\displaystyle{ \tau_N }[/math] Buoyancy timescale buoyancy_time_scale [math]\displaystyle{ \tau_N = \frac{2\pi}{N} }[/math] s
L_E [math]\displaystyle{ L_E }[/math] Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale [math]\displaystyle{ L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z} }[/math] m
L_RHO [math]\displaystyle{ L_\rho }[/math] Density length scale density_length_scale [math]\displaystyle{ L_\rho }[/math] m
L_S [math]\displaystyle{ L_S }[/math] Corssin length scale Corssin_shear_length_scale [math]\displaystyle{ L_S = \sqrt{\epsilon/S^3} }[/math] m
L_K [math]\displaystyle{ \eta }[/math] Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale [math]\displaystyle{ \eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K} }[/math] m
L_O [math]\displaystyle{ L_o }[/math] Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale [math]\displaystyle{ L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2} }[/math] m

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]


  • Missing the y-axi variable. CEB proposes:
    • [math]\displaystyle{ \Psi_{variable} }[/math] for model/theoretical spectrum of variable e.g., du/dx or u
    • [math]\displaystyle{ \Phi_{variable} }[/math] for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] s
[math]\displaystyle{ \Delta s }[/math] Sampling volume dimension m
[math]\displaystyle{ f }[/math] Frequency [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] Hz
[math]\displaystyle{ f_n }[/math] Nyquist frequency [math]\displaystyle{ f_n=0.5f_s }[/math] Hz
[math]\displaystyle{ f_s }[/math] Sampling frequency [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] Hz
[math]\displaystyle{ k }[/math] Wavenumbers (angular) [math]\displaystyle{ k=\frac{f}{\bar{u}}=2\pi\hat{k} }[/math] rad/m
[math]\displaystyle{ \hat{k} }[/math] Wavenumbers [math]\displaystyle{ \hat{k}=\frac{k}{2\pi} }[/math] cpm
[math]\displaystyle{ \hat{k}_\Delta }[/math] Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] cpm
[math]\displaystyle{ \hat{k}_n }[/math] Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] cpm
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ 2\pi f }[/math] rad/s

Test