Nomenclature: Difference between revisions

From Atomix
No edit summary
Line 14: Line 14:
'''---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---'''
'''---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---'''


{| class="wikitable"
{| class="wikitable"  
|- Style="font-weight:bold; "
|-
! Parameter name
! Symbol
! Symbol
! Description
! Description
! Standard long name
! Units
! Units
|-
|-
|EAST_VEL
| u
| <math> u </math>
| zonal velocity
| zonal velocity
| eastward_velocity
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|NORTH_VEL
| v
| <math> v </math>
| meridional velocity
| meridional velocity
| northward_velocity
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|UP_VEL
| <math> W </math>
| vertical velocity
| upward_velocity
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|ERROR_VEL
| u_e
| <math> u_e </math>
| error velocity
| error velocity
| error_velocity
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|U_VEL
| <math> U </math>
| velocity parellel to mean flow
| meanflow_velocity
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|V_VEL
| V
| <math> V </math>
| velocity perpendicular to mean flow
| velocity perpendicular to mean flow
| crossflow_velocity
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|Drop_Speed
| W_d
| <math> W_d </math>
| Profiler fall speed
| Profiler fall speed
| mean_drop_speed
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|FlowPast_Speed
| U_P
| <math> U_P </math>
| Flow speed past sensor
| Flow speed past sensor
| mean_velocity_past_turbulence_sensor
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|AlongBeam_Velocity
| b
| <math> b </math>
| Along-beam velocity from acoustic Doppler sensor
| Along-beam velocity from acoustic Doppler sensor
| observed_velocity_along_an_acoustic_beam
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|AlongBeam_Residual_Velocity
| b^{\prime}
| <math> b^{\prime} </math>
| Along-beam velocity from acoustic Doppler sensor with background flow deducted
| Along-beam velocity from acoustic Doppler sensor with background flow deducted
| residual_velocity_along_an_acoustic_beam
| \mathrm{m\, s^{-1}}
| <math>\mathrm{m\, s^{-1}}</math>
|-
|-
|Vertical_Bin_Size
| \delta{z}
| <math> \delta{z} </math>
| Vertical size of measurement bin for acoustic Doppler sensor
| Vertical size of measurement bin for acoustic Doppler sensor
| vertical_bin_size
| \mathrm{m}
| <math>\mathrm{m}</math>
|-
|-
|AlongBeam_Distance
| r
| <math> r </math>
| Along-beam distance from acoustic Doppler sensor
| Along-beam distance from acoustic Doppler sensor
| distance_along_an_acoustic_beam
| \mathrm{m}
| <math>\mathrm{m}</math>
|-
|-
|AlongBeam_Bin_Size
| \delta{r}
| <math> \delta{r} </math>
| Along-beam bin size for acoustic Doppler sensor
| Along-beam bin size for acoustic Doppler sensor
| bin_size_along_an_acoustic_beam
| \mathrm{m}
| <math>\mathrm{m}</math>
|-
|-
|Beam_Angle
| \theta
| <math> \theta </math>
| Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor
| Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor
| acoustic_beam_angle
| ^{\circ}
| <math> ^{\circ} </math>
|}
|}



Revision as of 18:46, 13 October 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful

---- MOVE THIS TO CONCEPT ---

Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.
  • Needs to be decided across the ADV/ADCP working groups

---- MOVE THIS TO FUNDAMENTALS ---

Background (total) velocity

---- MAKE SURE TO BE CONSISTENT WITH NETCDF TABLE --- ---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---

Symbol Description Units
u zonal velocity \mathrm{m\, s^{-1}}
v meridional velocity \mathrm{m\, s^{-1}}
u_e error velocity \mathrm{m\, s^{-1}}
V velocity perpendicular to mean flow \mathrm{m\, s^{-1}}
W_d Profiler fall speed \mathrm{m\, s^{-1}}
U_P Flow speed past sensor \mathrm{m\, s^{-1}}
b Along-beam velocity from acoustic Doppler sensor \mathrm{m\, s^{-1}}
b^{\prime} Along-beam velocity from acoustic Doppler sensor with background flow deducted \mathrm{m\, s^{-1}}
\delta{z} Vertical size of measurement bin for acoustic Doppler sensor \mathrm{m}
r Along-beam distance from acoustic Doppler sensor \mathrm{m}
\delta{r} Along-beam bin size for acoustic Doppler sensor \mathrm{m}
\theta Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor ^{\circ}

Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI ε Turbulent kinetic energy dissipation rate tke_dissipation Wkg1
RI Ri Richardson number richardson_number Ri=N2S2
RI_F Rif Flux gradient Richardson number flux_grad_richardson_number BP or Ivey & Immerger? Karan et cie
Krho κρ Turbulent diffusivity turbulent_diffusivity κ=ΓεN2 m2s1
DLL DLL Second-order longitudinal structure function second_order_longitudinal_structure_function DLL=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Parameter Name Symbol Description Standard long name Eqn Units
SAL Sa Salinity Salinity 35
TEMP T Temperature Temperature 240 C
PRES P Pressure Pressure 0  1×104 dbar
DENSITY ρ Density of water Density ρ=ρ(T,Sa,P) kgm3
ALPHA α Temperature coefficient of expansion Temperature_coefficient_of_expansion α=1ρρT K1
BETA β Saline coefficient of contraction Saline_coefficient_of_contraction β=1ρρSa
S S Background velocity shear background_velocity_shear S=((Uz)2+(Vz)2)1/2 s1
KVISC35 ν35 Temperature dependent kinematic viscosity of seawater at a salinity of 35 seawater_kinematic_viscosity_at_35psu 1×106 m2s1
KVISC00 ν00 Temperature dependent kinematic viscosity of freshwater freshwater_kinematic_viscosity 1×106 m2s1
GAMMA_A Γ Adiabatic temperature gradient -- salinity, temperature and pressure dependent Rate of change of temperature due to pressure 1×104 Kdbar1
N N Background stratification, i.e buoyancy frequency background_buoyancy_frequency N2=g[α(Γ+Tz)βSaz] rads1

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N τN Buoyancy timescale buoyancy_time_scale τN=1N s
T_P TN Buoyancy period buoyancy_period TN=2πN s
L_E LE Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale LE=ρ'21/2ρ/z m
L_RHO Lρ Density length scale density_length_scale Lρ m
L_S LS Corssin length scale Corssin_shear_length_scale LS=ε/S3 m
L_K η Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale η=(ν3ε)1/4 m
L_K LK Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale LK=(ν3ε)1/4 m
L_O Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale Lo=(εN3)1/2 m
L_T LT Thorp length scale Thorpe_stratification_length_scale LT m

Turbulence Spectrum

---- MERGE WITH THE SPECTRUM IN FUNDEMENTALS ---

Taylor's Frozen Turbulence for converting temporal to spatial measurements. Convert time derivatives to spatial gradients along the direction of profiling using

x=1UPt .

Convert frequency spectra into wavenumber spectra using

k=f/UP and Ψ(k)=UPΨ(f) .


  • Missing the y-axi variable. CEB proposes:
    • Ψvariable for model/theoretical spectrum of variable e.g., du/dx or u
    • Φvariable for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm