Nomenclature: Difference between revisions

From Atomix
Line 141: Line 141:
| Density of water
| Density of water
| <math>\mathrm{kg\, m^{-3}} </math>
| <math>\mathrm{kg\, m^{-3}} </math>
| \rho = \rho\left(T,S_a,P \right)
| <math> \rho = \rho\left(T,S_a,P \right)</math>
|-
|-
| \alpha
| \alpha
| Temperature coefficient of expansion
| Temperature coefficient of expansion
| \mathrm{K^{-1}}
| <math> \mathrm{K^{-1}}</math>
| \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}
| <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math>
|-
|-
| \beta
| \beta
| Saline coefficient of contraction
| Saline coefficient of contraction
|  
|  
| \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math>
|-
|-
| S
| S
| Background velocity shear
| Background velocity shear
| \mathrm{s^{-1}}
| <math> \mathrm{s^{-1}} </math>
| S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2}
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math>
|-
|-
| \nu_{35}
| <math> \nu_{35}
| Temperature dependent kinematic viscosity of seawater at a salinity of 35
| Temperature dependent kinematic viscosity of seawater at a salinity of 35
| \mathrm{m^2\, s^{-1} }
| <math> \mathrm{m^2\, s^{-1} } </math>
| \sim 1\times 10^{-6}
| <math> \sim 1\times 10^{-6} </math>
|-
|-
| \nu_{00}
| <math>\nu_{00}</math>
| Temperature dependent kinematic viscosity of freshwater
| Temperature dependent kinematic viscosity of freshwater
| \mathrm{m^2\, s^{-1} }
| <math>\mathrm{m^2\, s^{-1} } </math>
| \sim 1\times 10^{-6}
| <math>\sim 1\times 10^{-6} </math>
|-
|-
| \Gamma
| <math>\Gamma </math>
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent
| \mathrm{K\, dbar^{-1} }
| <math>\mathrm{K\, dbar^{-1} } </math>
| \sim 1\times 10^{-4}
| <math>\sim 1\times 10^{-4}</math>
|-
|-
| N
| <math>N </math>
| Background stratification, i.e buoyancy frequency
| Background stratification, i.e buoyancy frequency
| \mathrm{rad\, s^{-1} }
| <math>\mathrm{rad\, s^{-1} } </math>
| N^2 = g\left[ \alpha\left(\Gamma + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_a}{\partial z} \right]
| <math>N^2 = g\left[ \alpha\left(\Gamma + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_a}{\partial z} \right] </math>
|}
|}



Revision as of 19:00, 13 October 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful

---- MOVE THIS TO CONCEPT ---

Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.
  • Needs to be decided across the ADV/ADCP working groups

---- MOVE THIS TO FUNDAMENTALS ---

Background (total) velocity

---- MAKE SURE TO BE CONSISTENT WITH NETCDF TABLE --- ---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---

Symbol Description Units
u zonal velocity ms1
v meridional velocity ms1
u_e error velocity ms1
V velocity perpendicular to mean flow ms1
W_d Profiler fall speed ms1
U_P Flow speed past sensor ms1
b Along-beam velocity from acoustic Doppler sensor ms1
b Along-beam velocity from acoustic Doppler sensor with background flow deducted ms1
δz Vertical size of measurement bin for acoustic Doppler sensor m
r Along-beam distance from acoustic Doppler sensor m
δr Along-beam bin size for acoustic Doppler sensor m
θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor

Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI ε Turbulent kinetic energy dissipation rate tke_dissipation Wkg1
RI Ri Richardson number richardson_number Ri=N2S2
RI_F Rif Flux gradient Richardson number flux_grad_richardson_number BP or Ivey & Immerger? Karan et cie
Krho κρ Turbulent diffusivity turbulent_diffusivity κ=ΓεN2 m2s1
DLL DLL Second-order longitudinal structure function second_order_longitudinal_structure_function DLL=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Symbol Description Units Eqn
S_a Salinity 35
T Temperature C 240
P Pressure dbar 0  1×104
\rho Density of water kgm3 ρ=ρ(T,Sa,P)
\alpha Temperature coefficient of expansion K1 α=1ρρT
\beta Saline coefficient of contraction β=1ρρSa
S Background velocity shear s1 S=((Uz)2+(Vz)2)1/2
ν35|Temperaturedependentkinematicviscosityofseawateratasalinityof35|<math>m2s1 1×106
ν00 Temperature dependent kinematic viscosity of freshwater m2s1 1×106
Γ Adiabatic temperature gradient -- salinity, temperature and pressure dependent Kdbar1 1×104
N Background stratification, i.e buoyancy frequency rads1 N2=g[α(Γ+Tz)βSaz]

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N τN Buoyancy timescale buoyancy_time_scale τN=1N s
T_P TN Buoyancy period buoyancy_period TN=2πN s
L_E LE Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale LE=ρ'21/2ρ/z m
L_RHO Lρ Density length scale density_length_scale Lρ m
L_S LS Corssin length scale Corssin_shear_length_scale LS=ε/S3 m
L_K η Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale η=(ν3ε)1/4 m
L_K LK Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale LK=(ν3ε)1/4 m
L_O Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale Lo=(εN3)1/2 m
L_T LT Thorp length scale Thorpe_stratification_length_scale LT m

Turbulence Spectrum

---- MERGE WITH THE SPECTRUM IN FUNDEMENTALS ---

Taylor's Frozen Turbulence for converting temporal to spatial measurements. Convert time derivatives to spatial gradients along the direction of profiling using

x=1UPt .

Convert frequency spectra into wavenumber spectra using

k=f/UP and Ψ(k)=UPΨ(f) .


  • Missing the y-axi variable. CEB proposes:
    • Ψvariable for model/theoretical spectrum of variable e.g., du/dx or u
    • Φvariable for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm