Nomenclature: Difference between revisions
From Atomix
| Line 141: | Line 141: | ||
| Density of water | | Density of water | ||
| <math>\mathrm{kg\, m^{-3}} </math> | | <math>\mathrm{kg\, m^{-3}} </math> | ||
| \rho = \rho\left(T,S_a,P \right) | | <math> \rho = \rho\left(T,S_a,P \right)</math> | ||
|- | |- | ||
| \alpha | | \alpha | ||
| Temperature coefficient of expansion | | Temperature coefficient of expansion | ||
| \mathrm{K^{-1}} | | <math> \mathrm{K^{-1}}</math> | ||
| \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T} | | <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math> | ||
|- | |- | ||
| \beta | | \beta | ||
| Saline coefficient of contraction | | Saline coefficient of contraction | ||
| | | | ||
| \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a} | | <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math> | ||
|- | |- | ||
| S | | S | ||
| Background velocity shear | | Background velocity shear | ||
| \mathrm{s^{-1}} | | <math> \mathrm{s^{-1}} </math> | ||
| S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} | | <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math> | ||
|- | |- | ||
| \nu_{35} | | <math> \nu_{35} | ||
| Temperature dependent kinematic viscosity of seawater at a salinity of 35 | | Temperature dependent kinematic viscosity of seawater at a salinity of 35 | ||
| \mathrm{m^2\, s^{-1} } | | <math> \mathrm{m^2\, s^{-1} } </math> | ||
| \sim 1\times 10^{-6} | | <math> \sim 1\times 10^{-6} </math> | ||
|- | |- | ||
| \nu_{00} | | <math>\nu_{00}</math> | ||
| Temperature dependent kinematic viscosity of freshwater | | Temperature dependent kinematic viscosity of freshwater | ||
| \mathrm{m^2\, s^{-1} } | | <math>\mathrm{m^2\, s^{-1} } </math> | ||
| \sim 1\times 10^{-6} | | <math>\sim 1\times 10^{-6} </math> | ||
|- | |- | ||
| \Gamma | | <math>\Gamma </math> | ||
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent | | Adiabatic temperature gradient -- salinity, temperature and pressure dependent | ||
| \mathrm{K\, dbar^{-1} } | | <math>\mathrm{K\, dbar^{-1} } </math> | ||
| \sim 1\times 10^{-4} | | <math>\sim 1\times 10^{-4}</math> | ||
|- | |- | ||
| N | | <math>N </math> | ||
| Background stratification, i.e buoyancy frequency | | Background stratification, i.e buoyancy frequency | ||
| \mathrm{rad\, s^{-1} } | | <math>\mathrm{rad\, s^{-1} } </math> | ||
| N^2 = g\left[ \alpha\left(\Gamma + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_a}{\partial z} \right] | | <math>N^2 = g\left[ \alpha\left(\Gamma + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_a}{\partial z} \right] </math> | ||
|} | |} | ||
Revision as of 19:00, 13 October 2021
Frame of reference
- Define frame of reference, and notation. Use u,v,w and x,y, and z?
- Dumping a sketch would be useful
---- MOVE THIS TO CONCEPT ---
Reynold's Decomposition
- Variable names for Decomposition of total, mean, turbulent and waves.
- Needs to be decided across the ADV/ADCP working groups
---- MOVE THIS TO FUNDAMENTALS ---
Background (total) velocity
---- MAKE SURE TO BE CONSISTENT WITH NETCDF TABLE --- ---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---
| Symbol | Description | Units |
|---|---|---|
| u | zonal velocity | |
| v | meridional velocity | |
| u_e | error velocity | |
| V | velocity perpendicular to mean flow | |
| W_d | Profiler fall speed | |
| U_P | Flow speed past sensor | |
| b | Along-beam velocity from acoustic Doppler sensor | |
| Along-beam velocity from acoustic Doppler sensor with background flow deducted | ||
| Vertical size of measurement bin for acoustic Doppler sensor | ||
| r | Along-beam distance from acoustic Doppler sensor | |
| Along-beam bin size for acoustic Doppler sensor | ||
| Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor |
Turbulence properties
| Parameter name | Symbol | Description | Standard long name | Eqn | Units |
|---|---|---|---|---|---|
| EPSI | Turbulent kinetic energy dissipation rate | tke_dissipation | |||
| RI | Richardson number | richardson_number | |||
| RI_F | Flux gradient Richardson number | flux_grad_richardson_number | or Ivey & Immerger? Karan et cie | ||
| Krho | Turbulent diffusivity | turbulent_diffusivity | |||
| DLL | Second-order longitudinal structure function | second_order_longitudinal_structure_function |
Fluid properties and background gradients for turbulence calculations
| Symbol | Description | Units | Eqn |
|---|---|---|---|
| S_a | Salinity | ||
| T | Temperature | ||
| P | Pressure | ||
| \rho | Density of water | ||
| \alpha | Temperature coefficient of expansion | ||
| \beta | Saline coefficient of contraction | ||
| S | Background velocity shear | ||
| Temperature dependent kinematic viscosity of freshwater | |||
| Adiabatic temperature gradient -- salinity, temperature and pressure dependent | |||
| Background stratification, i.e buoyancy frequency |
Theoretical Length and Time Scales
| Parameter | Symbol | Description | Standard long name | Eqn | Units |
|---|---|---|---|---|---|
| T_N | Buoyancy timescale | buoyancy_time_scale | |||
| T_P | Buoyancy period | buoyancy_period | |||
| L_E | Ellison length scale (limit of vertical displacement without irreversible mixing) | Eliison_lenght_scale | |||
| L_RHO | Density length scale | density_length_scale | |||
| L_S | Corssin length scale | Corssin_shear_length_scale | |||
| L_K | Kolmogorov length scale (smallest overturns) | Kolmogorov_length_scale | |||
| L_K | Kolmogorov length scale (smallest overturns) | Kolmogorov_length_scale | |||
| L_O | Ozmidov length scale, measure of largest overturns in a stratified fluid | Ozmidov_stratification_length_scale | |||
| L_T | Thorp length scale | Thorpe_stratification_length_scale |
Turbulence Spectrum
---- MERGE WITH THE SPECTRUM IN FUNDEMENTALS ---
Taylor's Frozen Turbulence for converting temporal to spatial measurements. Convert time derivatives to spatial gradients along the direction of profiling using
.
Convert frequency spectra into wavenumber spectra using
and .
- Missing the y-axi variable. CEB proposes:
- for model/theoretical spectrum of variable e.g., du/dx or u
- for observed spectrum of variable e.g., du/dx or u
- Lowest frequency and wavenumber resolvable
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| Sampling interval | |||
| Sampling rate | |||
| Sample spacing | |||
| Linear dimension of sampling volume (instrument dependent) | |||
| Cyclic frequency | |||
| Angular frequency | |||
| Nyquist frequency | |||
| Cyclic wavenumber | |||
| Angular wavenumber | |||
| Nyquist wavenumber, based on sampling volume size | |||
| Nyquist wavenumber, via Taylor's hypothesis |
