Diapycnal eddy diffusivity: Difference between revisions
From Atomix
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{ | {{DefineConcept | ||
|parameter_name=Diapycnal eddy diffusivity | |parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math> | ||
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho'{</math> | |||
|description=Diapycnal eddy diffusivity | |article_type=Concept | ||
|instrument_type=Velocity profilers | |||
| | |||
|instrument_type= | |||
}} | }} | ||
<math>K_\rho =\Gamma \epsilon N^{-2}</math> | Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math> | ||
Revision as of 13:37, 14 October 2021
| Short definition of Diapycnal eddy diffusivity (Diapycnal eddy diffusivity <math>K_\rho</math>) |
|---|
| Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho'{</math> |
This is the common definition for Diapycnal eddy diffusivity, but other definitions maybe discussed within the wiki.
{{#default_form:DefineConcept}} {{#arraymap:Velocity profilers|,|x||}}
Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math>
