Diapycnal eddy diffusivity: Difference between revisions

From Atomix
No edit summary
No edit summary
Line 1: Line 1:
{{netcdfGlossary
{{DefineConcept
|parameter_name=Diapycnal eddy diffusivity
|parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math>
|symbol=<math>K_\rho</math>
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho'{</math>
|description=Diapycnal eddy diffusivity
|article_type=Concept
|standard_name=turbulent_diffusivity
|instrument_type=Velocity profilers
|units=m<math>^2</math> s<math>^{-1}</math>
|cf-compliant=No
|instrument_type=Velocity point-measurements, Velocity profilers, Shear probes
|standard_long_name=turbulent_diffusivity
}}
}}
<math>K_\rho =\Gamma \epsilon N^{-2}</math>
Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math>

Revision as of 13:37, 14 October 2021


Short definition of Diapycnal eddy diffusivity (Diapycnal eddy diffusivity <math>K_\rho</math>)
Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho'{</math>

This is the common definition for Diapycnal eddy diffusivity, but other definitions maybe discussed within the wiki.

{{#default_form:DefineConcept}} {{#arraymap:Velocity profilers|,|x||}}

Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math>