Diapycnal eddy diffusivity: Difference between revisions
From Atomix
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{DefineConcept | {{DefineConcept | ||
|parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math> | |parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math> | ||
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho' | |description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho'}</math> | ||
|article_type=Concept | |article_type=Concept | ||
|instrument_type=Velocity profilers | |instrument_type=Velocity profilers | ||
}} | }} | ||
Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math> | Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math> |
Revision as of 13:38, 14 October 2021
Short definition of Diapycnal eddy diffusivity (Diapycnal eddy diffusivity [math]\displaystyle{ K_\rho }[/math]) |
---|
Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux [math]\displaystyle{ \bar{w'\rho'} }[/math] |
This is the common definition for Diapycnal eddy diffusivity, but other definitions maybe discussed within the wiki.
Osborn 1980 showed that [math]\displaystyle{ K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2} }[/math]