Diapycnal eddy diffusivity: Difference between revisions

From Atomix
No edit summary
No edit summary
Line 1: Line 1:
{{DefineConcept
{{DefineConcept
|parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math>
|parameter_name=Diapycnal eddy diffusivity <math>K_\rho</math>
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\bar{w'\rho'}</math>
|description=Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux <math>\overline{w'\rho'}</math>
|article_type=Concept
|article_type=Concept
|instrument_type=Velocity profilers
|instrument_type=Velocity profilers
}}
}}
Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math>
Osborn 1980 showed that <math>K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2}</math>

Revision as of 13:39, 14 October 2021


Short definition of Diapycnal eddy diffusivity (Diapycnal eddy diffusivity [math]\displaystyle{ K_\rho }[/math])
Diapycnal eddy diffusivity (for buoyancy) is defined from the buoyancy flux [math]\displaystyle{ \overline{w'\rho'} }[/math]

This is the common definition for Diapycnal eddy diffusivity, but other definitions maybe discussed within the wiki.

Osborn 1980 showed that [math]\displaystyle{ K_\rho =\frac{\bar{w'\rho'}}{\partial \rho/\partial z}\Gamma \epsilon N^{-2} }[/math]