Nomenclature: Difference between revisions

From Atomix
No edit summary
mNo edit summary
Line 87: Line 87:
| EPSI
| EPSI
| <math>\varepsilon</math>
| <math>\varepsilon</math>
| Turbulent kinetic energy dissipation
| Turbulent kinetic energy dissipation rate
| tke_dissipation
| tke_dissipation
|
|

Revision as of 08:09, 23 April 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Background (total) velocity

Parameter name Symbol Description Standard long name Units
EAST_VEL <math> u </math> zonal velocity eastward_velocity m s-1
NORTH_VEL <math> v </math> meridional velocity northward_velocity m s-1
UP_VEL <math> W </math> vertical velocity upward_velocity m s-1
ERROR_VEL <math> u </math> error velocity error_velocity m s-1
U_VEL <math> U </math> velocity parellel to mean flow meanflow_velocity m s-1
V_VEL <math> V </math> velocity perpendicular to mean flow crossflow_velocity m s-1
Drop_Speed <math> W_d </math> Profiler fall speed mean_drop_speed m s-1
FlowPast_Speed <math> U_fp </math> Flow speed past sensor mean_velocity_past_turbulence_sensor m s-1
AlongBeam_Velocity <math> b </math> Along-beam velocity from acoustic Doppler sensor observed_speed_along_an_acoustic_beam m s-1

Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI <math>\varepsilon</math> Turbulent kinetic energy dissipation rate tke_dissipation W/kg
RI <math>Ri</math> Richardson number richardson_number <math> Ri = \frac{N^2}{S^2}</math>
RI_F <math>Ri_f</math> Flux gradient Richardson number flux_grad_richardson_number <math> \frac{B}{P} </math> or Ivey & Immerger? Karan et cie
Krho <math>\kappa_\rho</math> Turbulent diffusivity turbulent_diffusivity <math> \kappa = \Gamma \epsilon N^{-2} </math> m<math>^2</math>s<math>^{-1}</math>

Fluid properties and background gradients for turbulence calculations

Parameter Name Symbol Description Standard long name Eqn Units
S <math>S</math> Background velocity shear background_velocity_shear U|}{\partial z}</math> s<math>^{-1}</math>
KVISC35 <math>\nu</math> Kinematic viscosity of water for seawater at 35 and 20 <math>^o</math>C seawater_kinematic_viscosity_at_35psu <math> 1\times 10^{-6}</math> m2/s
N <math>N</math> Background stratification, i.e buoyancy frequency background_buoyancy_frequency <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math> rad/s

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N <math>\tau_N</math> Buoyancy timescale buoyancy_time_scale <math> \tau_N = \frac{2\pi}{N}</math> s
L_E <math>L_E</math> Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math> m
L_RHO <math> L_\rho</math> Density length scale density_length_scale <math> L_\rho </math> m
L_S <math>L_S</math> Corssin length scale Corssin_shear_length_scale <math> L_S = \sqrt{\epsilon/S^3} </math> m
L_K <math>\eta</math> Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math> m
L_O <math>L_o</math> Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math> m
L_T <math>L_T</math> Thorp length scale Thorpe_stratification_length_scale <math>L_T</math> m

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements <math>\left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right)</math>


  • Missing the y-axi variable. CEB proposes:
    • <math>\Psi_{variable}</math> for model/theoretical spectrum of variable e.g., du/dx or u
    • <math>\Phi_{variable}</math> for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
<math>\Delta t</math> Sampling interval <math> \frac{1}{f_s} </math> s
<math>\Delta s</math> Sampling volume dimension m
<math>f</math> Frequency <math>\frac{\omega}{2\pi}</math> Hz
<math>f_n</math> Nyquist frequency <math>f_n=0.5f_s</math> Hz
<math>f_s</math> Sampling frequency <math>f_s=\frac{1}{\Delta t} </math> Hz
<math>k</math> Wavenumbers (angular) <math>k=\frac{f}{\bar{u}}=2\pi\hat{k}</math> rad/m
<math>\hat{k}</math> Wavenumbers <math>\hat{k}=\frac{k}{2\pi}</math> cpm
<math>\hat{k}_\Delta</math> Nyquist wavenumber, based on sampling volume's size <math>\Delta l</math> <math>\hat{k}_\Delta=\frac{0.5}{\Delta l}</math> cpm
<math>\hat{k}_n</math> Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) <math>\hat{k}_n=\frac{f_n}{u}</math> cpm
<math>\omega</math> Angular frequency <math>2\pi f</math> rad/s

Supplementary Data required for computing Turbulence

Channel Shear Probes ADCP ADVs
Ax x x x
Ay x x x
Az x x x