Bin-centred difference scheme: Difference between revisions
From Atomix
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
## increment <math>\delta</math> and repeat steps until <math>\delta = n_{\text{rmax}}</math> | ## increment <math>\delta</math> and repeat steps until <math>\delta = n_{\text{rmax}}</math> | ||
# increment <math>n</math> and repeat steps until <math>n + \frac{n_{\text{rmax}}}{2}</math> exceeds the bin number for which valid <math>v^\prime</math> are available | # increment <math>n</math> and repeat steps until <math>n + \frac{n_{\text{rmax}}}{2}</math> exceeds the bin number for which valid <math>v^\prime</math> are available | ||
Return to [[ADCP structure function flow chart| ADCP Flow Chart front page]] | |||
Revision as of 10:00, 11 November 2021
For a bin-centred difference scheme:
- start at bin <math>n = \frac{n_{\text{rmax}}}{2} + 1</math>
- start with <math>\delta</math> = 1
- if <math>\delta</math> is even compute the second order structure function <math>D(n,\delta)</math> as the segment mean of the square of the velocity difference between the bins separated by distance <math>\delta r_0</math> centered around bin <math>n</math>:
<math>D(n, \delta) = \Big\langle \big[v^\prime(n+\frac{\delta}{2},\ t) - v^\prime(n-\frac{\delta}{2},\ t)\big]^2 \Big\rangle</math>
where the angled brackets indicate the mean across all t for the data segment yielding a velocity difference after the application of the Level 1 QC criteria - if <math>\delta</math> is odd compute the second order structure function <math>D(n,\delta)</math> as the segment mean of the mean of the square of the velocity difference between the bins separated by distance <math>\delta r_0</math> centered on the upper and lower extent of bin <math>n</math>:
<math>\Delta v^\prime_{\text{lo}}(n, \delta, t) = v^\prime(n+\text{floor}\left(\frac{\delta}{2}\right),\ t) - v^\prime(n-\text{ceil}\left(\frac{\delta}{2}\right),\ t)</math>
<math>\Delta v^\prime_{\text{hi}}(n, \delta, t) = v^\prime(n+\text{ceil}\left(\frac{\delta}{2}\right),\ t) - v^\prime(n-\text{floor}\left(\frac{\delta}{2}\right),\ t)</math>
where <math>\text{ceil}</math> and <math>\text{floor}</math> indicate the upper and lower integer value respectively, then
<math>D(n, \delta) = \Bigg\langle \frac{\Delta v^\prime_{\text{lo}}(n, \delta, t)^2 + \Delta v^\prime_{\text{hi}}(n, \delta, t)^2}{2} \Bigg\rangle</math>
the angled brackets again indicating the mean across all <math>t</math> in the data segment yielding a velocity difference after the application of the Level 1 QC criteria - increment <math>\delta</math> and repeat steps until <math>\delta = n_{\text{rmax}}</math>
- increment <math>n</math> and repeat steps until <math>n + \frac{n_{\text{rmax}}}{2}</math> exceeds the bin number for which valid <math>v^\prime</math> are available
Return to ADCP Flow Chart front page
