Velocity inertial subrange model: Difference between revisions
mNo edit summary |
|||
Line 15: | Line 15: | ||
[[File:InertialSubrange.png]] | [[File:InertialSubrange.png]] | ||
<ref>This is not working, see {{cite journal|url=https://www.google.com |author= |date= |accessdate={{subst:#time:Y-m-d|now}}|title=Search}}</ref> | |||
== Inertial subrange for flows influenced by surface waves == | == Inertial subrange for flows influenced by surface waves == |
Revision as of 19:14, 11 November 2021
Short definition of Velocity inertial subrange model |
---|
The inertial subrange separates the energy-containing production range from the viscous dissipation range. |
This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.
Inertial subrange for steady-flows
This theoretical model predicts the spectral shape of velocities in wavenumber space.
[math]\displaystyle{ \Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3} }[/math]
Here [math]\displaystyle{ \hat{k} }[/math] is expressed in rad/m and [math]\displaystyle{ Vj }[/math] represents the velocities [math]\displaystyle{ V }[/math] in direction [math]\displaystyle{ j }[/math]. [math]\displaystyle{ C_k }[/math] is the empirical Kolmogorov universal constant of C = 1.5 (see Sreenivasan 1995 for a review on the universality of this constant). Amongst the three direction, the spectra deviates by the constant [math]\displaystyle{ a_j }[/math]:
- In the longitudinal direction, i.e., the direction of mean advection (j=1), [math]\displaystyle{ a_1=\frac{18}{55} }[/math]
- In the other directions [math]\displaystyle{ a_2=a_3=\frac{4}{3}a_1 }[/math]
Inertial subrange for flows influenced by surface waves
Need to add equations and figures from Lumley & Terray