Velocity inertial subrange model: Difference between revisions
| Line 16: | Line 16: | ||
[[File:InertialSubrange.png]] | [[File:InertialSubrange.png]] | ||
== Testing citation== | |||
<ref>{{Cite journal | <ref>{{Cite journal | ||
|authors= c bl, a friend, a 3rd author | |authors= c bl, a friend, a 3rd author | ||
Revision as of 19:37, 11 November 2021
| Short definition of Velocity inertial subrange model |
|---|
| The inertial subrange separates the energy-containing production range from the viscous dissipation range. |
This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.
{{#default_form:DefineConcept}} {{#arraymap:Velocity point-measurements, Velocity profilers|,|x||}}
Inertial subrange for steady-flows
This theoretical model predicts the spectral shape of velocities in wavenumber space.
<math>\Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3}</math>
Here <math>\hat{k}</math> is expressed in rad/m and <math>Vj</math> represents the velocities <math>V</math> in direction <math>j</math>. <math>C_k</math> is the empirical Kolmogorov universal constant of C = 1.5 (see Sreenivasan 1995 for a review on the universality of this constant). Amongst the three direction, the spectra deviates by the constant <math>a_j</math>:
- In the longitudinal direction, i.e., the direction of mean advection (j=1), <math>a_1=\frac{18}{55}</math>
- In the other directions <math>a_2=a_3=\frac{4}{3}a_1</math>
Testing citation
Inertial subrange for flows influenced by surface waves
Need to add equations and figures from Lumley & Terray
Notes
- ↑ {{#arraymap:c bl, a friend, a 3rd author|,|x|x|, |and}}. 2021. {{{paper_or_booktitle}}}. {{{journal_or_publisher}}}. doi:the doi part only enter the doi part only

