Velocity inertial subrange model: Difference between revisions
Line 18: | Line 18: | ||
== Testing citation== | == Testing citation== | ||
<ref>{{Cite journal | <ref>{{Cite journal | ||
|authors= | |authors= K. R. Sreenivasan | ||
|journal= | |journal= Phys. Fluids | ||
|papertitle= | |papertitle= On the universality of the Kolmogorov constant | ||
|year= | |year= 1991 | ||
|doi= | |doi= 10.1063/1.86 8656 | ||
}}</ref> Continue writing.. | }}</ref> Continue writing.. | ||
Revision as of 19:44, 11 November 2021
Short definition of Velocity inertial subrange model |
---|
The inertial subrange separates the energy-containing production range from the viscous dissipation range. |
This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.
Inertial subrange for steady-flows
This theoretical model predicts the spectral shape of velocities in wavenumber space.
[math]\displaystyle{ \Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3} }[/math]
Here [math]\displaystyle{ \hat{k} }[/math] is expressed in rad/m and [math]\displaystyle{ Vj }[/math] represents the velocities [math]\displaystyle{ V }[/math] in direction [math]\displaystyle{ j }[/math]. [math]\displaystyle{ C_k }[/math] is the empirical Kolmogorov universal constant of C = 1.5 (see Sreenivasan 1995 for a review on the universality of this constant). Amongst the three direction, the spectra deviates by the constant [math]\displaystyle{ a_j }[/math]:
- In the longitudinal direction, i.e., the direction of mean advection (j=1), [math]\displaystyle{ a_1=\frac{18}{55} }[/math]
- In the other directions [math]\displaystyle{ a_2=a_3=\frac{4}{3}a_1 }[/math]
Testing citation
[1] Continue writing..
Inertial subrange for flows influenced by surface waves
Need to add equations and figures from Lumley & Terray
Notes
- ↑ K. R. Sreenivasan. 1991. {{{paper_or_booktitle}}}. {{{journal_or_publisher}}}. doi:8656 10.1063/1.86 8656