Velocity inertial subrange model: Difference between revisions

From Atomix
Line 17: Line 17:


== Testing citation==
== Testing citation==
<ref>{{Cite journal
<ref name="Sreenivasan">{{Cite journal
|authors= K. R. Sreenivasan
|authors= K. R. Sreenivasan
|journal= Phys. Fluids
|journal= Phys. Fluids

Revision as of 19:46, 11 November 2021


Short definition of Velocity inertial subrange model
The inertial subrange separates the energy-containing production range from the viscous dissipation range.

This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.

Inertial subrange for steady-flows

This theoretical model predicts the spectral shape of velocities in wavenumber space.

[math]\displaystyle{ \Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3} }[/math]

Here [math]\displaystyle{ \hat{k} }[/math] is expressed in rad/m and [math]\displaystyle{ Vj }[/math] represents the velocities [math]\displaystyle{ V }[/math] in direction [math]\displaystyle{ j }[/math]. [math]\displaystyle{ C_k }[/math] is the empirical Kolmogorov universal constant of C = 1.5 (see Sreenivasan 1995 for a review on the universality of this constant). Amongst the three direction, the spectra deviates by the constant [math]\displaystyle{ a_j }[/math]:

  • In the longitudinal direction, i.e., the direction of mean advection (j=1), [math]\displaystyle{ a_1=\frac{18}{55} }[/math]
  • In the other directions [math]\displaystyle{ a_2=a_3=\frac{4}{3}a_1 }[/math]

Testing citation

[1] Continue writing..

Inertial subrange for flows influenced by surface waves

Need to add equations and figures from Lumley & Terray

Notes

  1. K. R. Sreenivasan. 1991. {{{paper_or_booktitle}}}. {{{journal_or_publisher}}}. doi:10.1063/1.868656