Velocity inertial subrange model: Difference between revisions

From Atomix
Line 12: Line 12:
= 1.5 <ref name="Sreenivasan">{{Cite journal
= 1.5 <ref name="Sreenivasan">{{Cite journal
|authors= K. R. Sreenivasan
|authors= K. R. Sreenivasan
|journal= Phys. Fluids
|journal_or_publisher= Phys. Fluids
|papertitle=  On the universality of the Kolmogorov constant
|paper_or_booktitle=  On the universality of the Kolmogorov constant
|year= 1991
|year= 1995
|doi= 10.1063/1.868656
|doi= 10.1063/1.868656
}}</ref>. Amongst the three direction, the spectra deviates by the constant <math>a_j</math>:
}}</ref>. Amongst the three direction, the spectra deviates by the constant <math>a_j</math>
<ref name="Pope">{{Cite journal
|authors= S.B Pope
|journal_or_publisher= Cambridge Univ. Press
|paper_or_booktitle=  Turbulent flows
|year= 2000
|doi= 10.1017/CBO9780511840531
}}</ref>
:
* In the longitudinal direction, i.e., the direction of mean advection (j=1), <math>a_1=\frac{18}{55}</math>  
* In the longitudinal direction, i.e., the direction of mean advection (j=1), <math>a_1=\frac{18}{55}</math>  
* In the other directions <math>a_2=a_3=\frac{4}{3}a_1</math>  
* In the other directions <math>a_2=a_3=\frac{4}{3}a_1</math>  

Revision as of 19:52, 11 November 2021


Short definition of Velocity inertial subrange model
The inertial subrange separates the energy-containing production range from the viscous dissipation range.

This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.

{{#default_form:DefineConcept}} {{#arraymap:Velocity point-measurements, Velocity profilers|,|x||}}

Inertial subrange for steady-flows

This theoretical model predicts the spectral shape of velocities in wavenumber space.

<math>\Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3}</math>

Here <math>\hat{k}</math> is expressed in rad/m and <math>Vj</math> represents the velocities <math>V</math> in direction <math>j</math>. <math>C_k</math> is the empirical Kolmogorov universal constant of C = 1.5 [1]. Amongst the three direction, the spectra deviates by the constant <math>a_j</math> [2]

  • In the longitudinal direction, i.e., the direction of mean advection (j=1), <math>a_1=\frac{18}{55}</math>
  • In the other directions <math>a_2=a_3=\frac{4}{3}a_1</math>

Inertial subrange for flows influenced by surface waves

Need to add equations and figures from Lumley & Terray

Notes

  1. {{#arraymap:K. R. Sreenivasan|,|x|x|, |and}}. 1995. On the universality of the Kolmogorov constant. Phys. Fluids. doi:10.1063/1.868656
  2. {{#arraymap:S.B Pope|,|x|x|, |and}}. 2000. Turbulent flows. Cambridge Univ. Press. doi:10.1017/CBO9780511840531