Velocity inertial subrange model: Difference between revisions

From Atomix
mNo edit summary
Line 9: Line 9:
<math>\Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3}</math>
<math>\Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3}</math>


[[File:InertialSubrangeSchematic.png|thumb|Sketch of velocity power density spectrum in log-log space.  The inertial subrange's -5/3 slope is highlighted. The vertical axis represents <math>\Psi_{Vj}(\hat{k})</math>. Large scale [[Anisotropic turbulence|turbulence anisotropy]] in low energy flow may alter the expected spectral shape]]
[[File:InertialSubrangeSchematic.png|thumb|Sketch of velocity power density spectrum in log-log space.  The inertial subrange's -5/3 slope is highlighted. The vertical axis represents <math>\Psi_{Vj}(\hat{k})</math>. Large scale [[#anisotropy|turbulence anisotropy]] in low energy flow may alter the expected spectral shape]]


Here <math>\hat{k}</math> is expressed in rad/m and <math>Vj</math> represents the velocities <math>V</math>  in direction <math>j</math>.  <math>C_k</math> is the empirical Kolmogorov universal constant of C
Here <math>\hat{k}</math> is expressed in rad/m and <math>Vj</math> represents the velocities <math>V</math>  in direction <math>j</math>.  <math>C_k</math> is the empirical Kolmogorov universal constant of C
Line 46: Line 46:
{{FontColor|fg=white|bg=red|text=Add example spectra, and link to Kolmogorv, Maybe refer to SV94}}
{{FontColor|fg=white|bg=red|text=Add example spectra, and link to Kolmogorv, Maybe refer to SV94}}


Testing my new anchor [[#anisotropy|anisotropy]]


== Notes ==
== Notes ==

Revision as of 14:04, 5 July 2022


Short definition of Velocity inertial subrange model
The inertial subrange separates the energy-containing production range from the viscous dissipation range.

This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.

Model for steady-flows

This theoretical model predicts the spectral shape of velocities in wavenumber space.

[math]\displaystyle{ \Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3} }[/math]

Sketch of velocity power density spectrum in log-log space. The inertial subrange's -5/3 slope is highlighted. The vertical axis represents [math]\displaystyle{ \Psi_{Vj}(\hat{k}) }[/math]. Large scale turbulence anisotropy in low energy flow may alter the expected spectral shape

Here [math]\displaystyle{ \hat{k} }[/math] is expressed in rad/m and [math]\displaystyle{ Vj }[/math] represents the velocities [math]\displaystyle{ V }[/math] in direction [math]\displaystyle{ j }[/math]. [math]\displaystyle{ C_k }[/math] is the empirical Kolmogorov universal constant of C = 1.5 [1]. Amongst the three direction, the spectra deviates by the constant [math]\displaystyle{ a_j }[/math]: [2]

  • In the longitudinal direction, i.e., the direction of mean advection (j=1), [math]\displaystyle{ a_1=\frac{18}{55} }[/math]
  • In the other directions [math]\displaystyle{ a_2=a_3=\frac{4}{3}a_1 }[/math]

Models influenced by surface waves

Need to add equations and figures from Lumley & Terray[3]

Inertial subrange collapse and anisotropy

Near boundaries or low energy environments, are defined as flows with a small separation between the large turbulent overturns [math]\displaystyle{ L }[/math] and the smallest (Kolmogorov).

Add example spectra, and link to Kolmogorv, Maybe refer to SV94


Notes

  1. K. R. Sreenivasan. 1995. On the universality of the Kolmogorov constant. Phys. Fluids. doi:10.1063/1.868656
  2. S.B Pope. 2000. Turbulent flows. Cambridge Univ. Press. doi:10.1017/CBO9780511840531
  3. J. Lumley and E. Terray. 1983. Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr. doi:<2000:KOTCBA>2.0.CO;2 10.1175/1520-0485(1983)<2000:KOTCBA>2.0.CO;2