Nomenclature: Difference between revisions

From Atomix
Line 36: Line 36:
| <math>k</math>
| <math>k</math>
| Wavenumbers (angular)
| Wavenumbers (angular)
| <math>k=\frac{f}{\bar{u}}</math>
| <math>k=\frac{f}{\bar{u}}=2\pi\hat{k}</math>
| rad/m
| rad/m
|-
|-

Revision as of 14:48, 12 March 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Decomposition of total, mean, turbulent and waves.


Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]


  • Missing the y-axis.
Symbol Description Eqn Units
[math]\displaystyle{ f }[/math] Frequency [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] Hz
[math]\displaystyle{ f_n }[/math] Nyquist frequency [math]\displaystyle{ f_n=0.5f_s }[/math] Hz
[math]\displaystyle{ f_s }[/math] Sampling frequency [math]\displaystyle{ \frac{1}{\Delta t} }[/math] Hz
[math]\displaystyle{ k }[/math] Wavenumbers (angular) [math]\displaystyle{ k=\frac{f}{\bar{u}}=2\pi\hat{k} }[/math] rad/m
[math]\displaystyle{ \hat{k} }[/math] Wavenumbers [math]\displaystyle{ \frac{k}{2\pi} }[/math] cpm
[math]\displaystyle{ \hat{k}_\Delta }[/math] Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] cpm
[math]\displaystyle{ \hat{k}_n }[/math] Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] cpm
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] s
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ 2\pi f }[/math] rad/s

Theoretical Length and Time Scales

Symbol Description Eqn Units
[math]\displaystyle{ \epsilon }[/math] Turbulent kinetic energy dissipation W/kg
[math]\displaystyle{ \eta }[/math] Kolmogorov length scale (smallest overturns) [math]\displaystyle{ \eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K} }[/math] m