Nomenclature: Difference between revisions

From Atomix
Line 18: Line 18:
! Eqn
! Eqn
! Units
! Units
|-
| <math>\Delta t</math>
| Sampling interval
| <math> \frac{1}{f_s} </math>
| s
|-
| <math>\Delta l</math>
| Sampling volume dimension
|
| m
|-
|-
| <math>f</math>
| <math>f</math>
Line 53: Line 63:
| <math>\hat{k}_n=\frac{f_n}{u}</math>
| <math>\hat{k}_n=\frac{f_n}{u}</math>
| cpm
| cpm
|-
| <math>\Delta t</math>
| Sampling interval
| <math> \frac{1}{f_s} </math>
| s
|-
|-
| <math>\omega</math>
| <math>\omega</math>

Revision as of 14:55, 12 March 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Decomposition of total, mean, turbulent and waves.


Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements (u¯1x=t)


  • Missing the y-axis.
Symbol Description Eqn Units
Δt Sampling interval 1fs s
Δl Sampling volume dimension m
f Frequency ω2π Hz
fn Nyquist frequency fn=0.5fs Hz
fs Sampling frequency 1Δt Hz
k Wavenumbers (angular) k=fu¯=2πk^ rad/m
k^ Wavenumbers k2π cpm
k^Δ Nyquist wavenumber, based on sampling volume's size Δl k^Δ=0.5Δl cpm
k^n Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) k^n=fnu cpm
ω Angular frequency 2πf rad/s

Theoretical Length and Time Scales

Symbol Description Eqn Units
ϵ Turbulent kinetic energy dissipation W/kg
ν Viscosity of water for seawater at 35psu and 20 oC 1×106 m2/s
η Kolmogorov length scale (smallest overturns) η=(ν3ϵ)1/4=12πk^K m [per rad?]