Nomenclature: Difference between revisions
From Atomix
Line 73: | Line 73: | ||
| s | | s | ||
|- | |- | ||
| <math>\Delta | | <math>\Delta s</math> | ||
| Sampling volume dimension | | Sampling volume dimension | ||
| | | |
Revision as of 14:15, 18 March 2021
Frame of reference
- Define frame of reference, and notation. Use u,v,w and x,y, and z?
- Dumping a sketch would be useful
Reynold's Decomposition
- Variable names for Decomposition of total, mean, turbulent and waves.
Theoretical Length and Time Scales
Symbol | Description | Eqn | Units |
---|---|---|---|
[math]\displaystyle{ \epsilon }[/math] | Turbulent kinetic energy dissipation | W/kg | |
[math]\displaystyle{ \nu }[/math] | Viscosity of water for seawater at 35psu and 20 oC | [math]\displaystyle{ 1\times 10^{-6} }[/math] | m2/s |
[math]\displaystyle{ N }[/math] | Buoyancy frequency | [math]\displaystyle{ N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}} }[/math] | rad/s |
[math]\displaystyle{ \tau_N }[/math] | Buoyancy timescale | [math]\displaystyle{ \tau_N = \frac{2\pi}{N} }[/math] | s |
[math]\displaystyle{ \eta }[/math] | Kolmogorov length scale (smallest overturns) | [math]\displaystyle{ \eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K} }[/math] | m [per rad?] |
[math]\displaystyle{ L_o }[/math] | Ozmidov length scale, measure of largest overturns in a stratified fluid | [math]\displaystyle{ L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2} }[/math] | m [per rad?] |
Turbulence Spectrum
Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]
- Missing the y-axi variable. CEB proposes:
- [math]\displaystyle{ \Psi_{variable} }[/math] for model/theoretical spectrum of variable e.g., du/dx or u
- [math]\displaystyle{ \Phi_{variable} }[/math] for observed spectrum of variable e.g., du/dx or u
- Lowest frequency and wavenumber resolvable
Symbol | Description | Eqn | Units |
---|---|---|---|
[math]\displaystyle{ \Delta t }[/math] | Sampling interval | [math]\displaystyle{ \frac{1}{f_s} }[/math] | s |
[math]\displaystyle{ \Delta s }[/math] | Sampling volume dimension | m | |
[math]\displaystyle{ f }[/math] | Frequency | [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] | Hz |
[math]\displaystyle{ f_n }[/math] | Nyquist frequency | [math]\displaystyle{ f_n=0.5f_s }[/math] | Hz |
[math]\displaystyle{ f_s }[/math] | Sampling frequency | [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] | Hz |
[math]\displaystyle{ k }[/math] | Wavenumbers (angular) | [math]\displaystyle{ k=\frac{f}{\bar{u}}=2\pi\hat{k} }[/math] | rad/m |
[math]\displaystyle{ \hat{k} }[/math] | Wavenumbers | [math]\displaystyle{ \hat{k}=\frac{k}{2\pi} }[/math] | cpm |
[math]\displaystyle{ \hat{k}_\Delta }[/math] | Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] | [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] | cpm |
[math]\displaystyle{ \hat{k}_n }[/math] | Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) | [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] | cpm |
[math]\displaystyle{ \omega }[/math] | Angular frequency | [math]\displaystyle{ 2\pi f }[/math] | rad/s |