Nomenclature

From Atomix

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful

---- MOVE THIS TO CONCEPT ---

Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.
  • Needs to be decided across the ADV/ADCP working groups

---- MOVE THIS TO FUNDAMENTALS ---

Background (total) velocity

---- MAKE SURE TO BE CONSISTENT WITH NETCDF TABLE --- ---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---


Symbol Description Units
u zonal velocity ms1
v meridional velocity ms1
ue error velocity ms1
V velocity perpendicular to mean flow ms1
Wd Profiler fall speed ms1
UP Flow speed past sensor ms1
b Along-beam velocity from acoustic Doppler sensor ms1
b Along-beam velocity from acoustic Doppler sensor with background flow deducted ms1
δz Vertical size of measurement bin for acoustic Doppler sensor m
r Along-beam distance from acoustic Doppler sensor m
δr Along-beam bin size for acoustic Doppler sensor m
θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor

Turbulence properties

Symbol Description Eqn Units
ε Turbulent kinetic energy dissipation rate Wkg1
Ri Richardson number Ri=N2S2
Rif Flux gradient Richardson number BP or Ivey & Imberger? Karan et cie
κρ Turbulent eddy diffusivity via Osborn's model κ=ΓεN2 m2s1
DLL Second-order longitudinal structure function DLL=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
Sa Salinity 35
T Temperature 240 C
P Pressure 0  1×104 dbar
ρ Density of water ρ=ρ(T,Sa,P) kgm3
α Temperature coefficient of expansion α=1ρρT K1
β Saline coefficient of contraction β=1ρρSa
S Background velocity shear S=((Uz)2+(Vz)2)1/2 s1
ν35 Temperature dependent kinematic viscosity of seawater at a salinity of 35 1×106 m2s1
ν00 Temperature dependent kinematic viscosity of freshwater 1×106 m2s1
Γ Adiabatic temperature gradient -- salinity, temperature and pressure dependent 1×104 Kdbar1
N Background stratification, i.e buoyancy frequency N2=g[α(Γ+Tz)βSaz] rads1

Theoretical Length and Time Scales

Symbol Description Eqn Units
τN Buoyancy timescale τN=1N s
TN Buoyancy period TN=2πN s
LE Ellison length scale (limit of vertical displacement without irreversible mixing) LE=ρ'21/2ρ/z m
Lρ Density length scale Lρ m
LS Corssin length scale LS=ε/S3 m
η Kolmogorov length scale (smallest overturns) η=(ν3ε)1/4 m
LK Kolmogorov length scale (smallest overturns) LK=(ν3ε)1/4 m
Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Lo=(εN3)1/2 m
LT Thorp length scale LT m

Turbulence Spectrum

These variables are used to express the Turbulence spectrum expected shapes.


CynthiaBluteau (talk) 01:08, 14 October 2021 (CEST) add theses to table.

    • Ψvariable for model/theoretical spectrum of variable e.g., du/dx or u
    • Φvariable for observed spectrum of variable e.g., du/dx or u
Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm