Nomenclature
From Atomix
Frame of reference
- Define frame of reference, and notation. Use u,v,w and x,y, and z?
- Decomposition of total, mean, turbulent and waves.
Turbulence Spectrum
Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]
Symbol | Description | Eqn | Units |
---|---|---|---|
[math]\displaystyle{ \epsilon }[/math] | Turbulent kinetic energy dissipation | W/kg | |
[math]\displaystyle{ f }[/math] | Frequency | [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] | Hz |
[math]\displaystyle{ f_n }[/math] | Nyquist frequency | [math]\displaystyle{ f_n=0.5f_s }[/math] | Hz |
[math]\displaystyle{ f_s }[/math] | Sampling frequency | [math]\displaystyle{ \frac{1}{\Delta t} }[/math] | Hz |
[math]\displaystyle{ k }[/math] | Wavenumbers (angular) | [math]\displaystyle{ k=\frac{f}{\bar{u}} }[/math] | rad/m |
[math]\displaystyle{ \hat{k} }[/math] | Wavenumbers | [math]\displaystyle{ \frac{k}{2\pi} }[/math] | cpm |
[math]\displaystyle{ \hat{k}_\Delta }[/math] | Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] | [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] | cpm |
[math]\displaystyle{ \hat{k}_n }[/math] | Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) | [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] | cpm |
[math]\displaystyle{ \Delta t }[/math] | Sampling interval | [math]\displaystyle{ \frac{1}{f_s} }[/math] | s |
[math]\displaystyle{ \omega }[/math] | Angular frequency | [math]\displaystyle{ 2\pi f }[/math] | rad/s |