Nomenclature
From Atomix
Frame of reference
- Define frame of reference, and notation. Use u,v,w and x,y, and z?
- Decomposition of total, mean, turbulent and waves.
Turbulence Spectrum
Taylor's Frozen Turbulence for converting temporal to spatial measurements <math>\left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right)</math>
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\epsilon</math> | Turbulent kinetic energy dissipation | W/kg | |
| <math>f</math> | Frequency | <math>\frac{\omega}{2\pi}</math> | Hz |
| <math>f_n</math> | Nyquist frequency | <math>f_n=0.5f_s</math> | Hz |
| <math>f_s</math> | Sampling frequency | <math> \frac{1}{\Delta t} </math> | Hz |
| <math>k</math> | Wavenumbers (angular) | <math>k=\frac{f}{\bar{u}}</math> | rad/m |
| <math>\hat{k}</math> | Wavenumbers | <math>\frac{k}{2\pi}</math> | cpm |
| <math>\hat{k}_\Delta</math> | Nyquist wavenumber, based on sampling volume's size <math>\Delta l</math> | <math>\hat{k}_\Delta=\frac{0.5}{\Delta l}</math> | cpm |
| <math>\hat{k}_n</math> | Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) | <math>\hat{k}_n=\frac{f_n}{u}</math> | cpm |
| <math>\Delta t</math> | Sampling interval | <math> \frac{1}{f_s} </math> | s |
| <math>\omega</math> | Angular frequency | <math>2\pi f</math> | rad/s |
