Nomenclature
From Atomix
Frame of reference
- Define frame of reference, and notation. Use u,v,w and x,y, and z?
- Dumping a sketch would be useful
Reynold's Decomposition
- Variable names for Decomposition of total, mean, turbulent and waves.
Turbulence properties
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\epsilon</math> | Turbulent kinetic energy dissipation | W/kg | |
| <math>\nu</math> | Viscosity of water for seawater at 35psu and 20 oC | <math> 1\times 10^{-6}</math> | m2/s |
| <math>N</math> | Buoyancy frequency | <math> N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}}</math> | rad/s |
Theoretical Length and Time Scales
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\tau_N</math> | Buoyancy timescale | <math> \tau_N = \frac{2\pi}{N}</math> | s |
| <math>L_E</math> | Ellison length scale (limit of vertical displacement without irreversible mixing) | <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overbar{\rho}/\partial z}</math> | m |
| <math>L_\rho/math> | density length scale | <math> L_\rho </math> | m |
| <math>L_s/math> | Corssin shear length scale (turbulence draws energy from uniform background shear) | <math> L_C = \sqrt{\epsilon/S^3} </math> | m |
| <math>\tau_N</math> | Buoyancy timescale | <math> \tau_N = \frac{2\pi}{N}</math> | s |
| <math>\eta</math> | Kolmogorov length scale (smallest overturns) | <math>\eta=\left(\frac{\nu^3}{\epsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K}</math> | m [per rad?] |
| <math>L_o</math> | Ozmidov length scale, measure of largest overturns in a stratified fluid | <math>L_o=\left(\frac{\epsilon}{N^3}\right)^{1/2}</math> | m [per rad?] |
Turbulence Spectrum
Taylor's Frozen Turbulence for converting temporal to spatial measurements <math>\left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right)</math>
- Missing the y-axi variable. CEB proposes:
- <math>\Psi_{variable}</math> for model/theoretical spectrum of variable e.g., du/dx or u
- <math>\Phi_{variable}</math> for observed spectrum of variable e.g., du/dx or u
- Lowest frequency and wavenumber resolvable
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\Delta t</math> | Sampling interval | <math> \frac{1}{f_s} </math> | s |
| <math>\Delta s</math> | Sampling volume dimension | m | |
| <math>f</math> | Frequency | <math>\frac{\omega}{2\pi}</math> | Hz |
| <math>f_n</math> | Nyquist frequency | <math>f_n=0.5f_s</math> | Hz |
| <math>f_s</math> | Sampling frequency | <math>f_s=\frac{1}{\Delta t} </math> | Hz |
| <math>k</math> | Wavenumbers (angular) | <math>k=\frac{f}{\bar{u}}=2\pi\hat{k}</math> | rad/m |
| <math>\hat{k}</math> | Wavenumbers | <math>\hat{k}=\frac{k}{2\pi}</math> | cpm |
| <math>\hat{k}_\Delta</math> | Nyquist wavenumber, based on sampling volume's size <math>\Delta l</math> | <math>\hat{k}_\Delta=\frac{0.5}{\Delta l}</math> | cpm |
| <math>\hat{k}_n</math> | Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) | <math>\hat{k}_n=\frac{f_n}{u}</math> | cpm |
| <math>\omega</math> | Angular frequency | <math>2\pi f</math> | rad/s |
