Nomenclature

From Atomix

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful

---- MOVE THIS TO CONCEPT ---

Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.
  • Needs to be decided across the ADV/ADCP working groups

---- MOVE THIS TO FUNDAMENTALS ---

Background (total) velocity

---- MAKE SURE TO BE CONSISTENT WITH NETCDF TABLE --- ---- NETCDF TABLE will have own page (periodic copy&paste of excel sheet)---

Symbol Description Units
u zonal velocity ms1
v meridional velocity ms1
ue error velocity ms1
V velocity perpendicular to mean flow ms1
Wd Profiler fall speed ms1
UP Flow speed past sensor ms1
b Along-beam velocity from acoustic Doppler sensor ms1
b Along-beam velocity from acoustic Doppler sensor with background flow deducted ms1
δz Vertical size of measurement bin for acoustic Doppler sensor m
r Along-beam distance from acoustic Doppler sensor m
δr Along-beam bin size for acoustic Doppler sensor m
θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor

Turbulence properties

CynthiaBluteau (talk) 21:03, 13 October 2021 (CEST) Many of these could be their own concepts/definitions.

Symbol Description Units Eqn
ε Turbulent kinetic energy dissipation rate Wkg1
Ri Richardson number Ri=N2S2
Rif Flux gradient Richardson number BP or Ivey & Imberger? Karan et cie
κρ Turbulent diffusivity m2s1 κ=ΓεN2
DLL Second-order longitudinal structure function m2s2 DLL=[b(r)b(r+nδr)]2

Fluid properties and background gradients for turbulence calculations

Symbol Description Units Eqn
Sa Salinity 35
T Temperature C 240
P Pressure dbar 0  1×104
ρ Density of water kgm3 ρ=ρ(T,Sa,P)
α Temperature coefficient of expansion K1 α=1ρρT
β Saline coefficient of contraction β=1ρρSa
S Background velocity shear s1 S=((Uz)2+(Vz)2)1/2
ν35 Temperature dependent kinematic viscosity of seawater at a salinity of 35 m2s1 1×106
ν00 Temperature dependent kinematic viscosity of freshwater m2s1 1×106
Γ Adiabatic temperature gradient -- salinity, temperature and pressure dependent Kdbar1 1×104
N Background stratification, i.e buoyancy frequency rads1 N2=g[α(Γ+Tz)βSaz]

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N τN Buoyancy timescale buoyancy_time_scale τN=1N s
T_P TN Buoyancy period buoyancy_period TN=2πN s
L_E LE Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale LE=ρ'21/2ρ/z m
L_RHO Lρ Density length scale density_length_scale Lρ m
L_S LS Corssin length scale Corssin_shear_length_scale LS=ε/S3 m
L_K η Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale η=(ν3ε)1/4 m
L_K LK Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale LK=(ν3ε)1/4 m
L_O Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale Lo=(εN3)1/2 m
L_T LT Thorp length scale Thorpe_stratification_length_scale LT m

Turbulence Spectrum

---- MERGE WITH THE SPECTRUM IN FUNDEMENTALS ---

Taylor's Frozen Turbulence for converting temporal to spatial measurements. Convert time derivatives to spatial gradients along the direction of profiling using

x=1UPt .

Convert frequency spectra into wavenumber spectra using

k=f/UP and Ψ(k)=UPΨ(f) .


  • Missing the y-axi variable. CynthiaBluteau (talk) 00:53, 14 October 2021 (CEST) proposes:
    • Ψvariable for model/theoretical spectrum of variable e.g., du/dx or u
    • Φvariable for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm