Velocity inertial subrange model

From Atomix
Revision as of 21:55, 11 November 2021 by CynthiaBluteau (talk | contribs)


Short definition of Velocity inertial subrange model
The inertial subrange separates the energy-containing production range from the viscous dissipation range.

This is the common definition for Velocity inertial subrange model, but other definitions maybe discussed within the wiki.

Inertial subrange for steady-flows

This theoretical model predicts the spectral shape of velocities in wavenumber space.

[math]\displaystyle{ \Psi_{Vj}(\hat{k})=a_jC_k\varepsilon^{2/3}\hat{k}^{-5/3} }[/math]

Sketch of velocity power density spectrum in log-log space. The inertial subrange's -5/3 slope is highlighted. The vertical axis represents [math]\displaystyle{ \Psi_{Vj}(\hat{k}) }[/math]. Large-scale turbulence anisotropy in low energy flow may alter the expected spectral shape

Here [math]\displaystyle{ \hat{k} }[/math] is expressed in rad/m and [math]\displaystyle{ Vj }[/math] represents the velocities [math]\displaystyle{ V }[/math] in direction [math]\displaystyle{ j }[/math]. [math]\displaystyle{ C_k }[/math] is the empirical Kolmogorov universal constant of C = 1.5 [1]. Amongst the three direction, the spectra deviates by the constant [math]\displaystyle{ a_j }[/math]: [2]

  • In the longitudinal direction, i.e., the direction of mean advection (j=1), [math]\displaystyle{ a_1=\frac{18}{55} }[/math]
  • In the other directions [math]\displaystyle{ a_2=a_3=\frac{4}{3}a_1 }[/math]


Inertial subrange for flows influenced by surface waves

Need to add equations and figures from Lumley & Terray[3]

Notes

  1. K. R. Sreenivasan. 1995. On the universality of the Kolmogorov constant. Phys. Fluids. doi:10.1063/1.868656
  2. S.B Pope. 2000. Turbulent flows. Cambridge Univ. Press. doi:10.1017/CBO9780511840531
  3. J. Lumley and E. Terray. 1983. Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr. doi:<2000:KOTCBA>2.0.CO;2 10.1175/1520-0485(1983)<2000:KOTCBA>2.0.CO;2