Example bin-centred difference

From Atomix
Revision as of 11:39, 15 November 2021 by Brian scannell (talk | contribs) (Created page with "Consider the example of an ADCP with a beam angle of <math>20^{\circ}</math>, configured with a vertical bin size of 10 cm, recording profiles at 1 second intervals with a dat...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Consider the example of an ADCP with a beam angle of 20, configured with a vertical bin size of 10 cm, recording profiles at 1 second intervals with a data segment length of 300 seconds. The Level 1 QC of the data identified that good data was typically returned from bins 1 to 30.

The velocity data from a single beam for a single data segment can therefore be visualised as:

The along-beam bin separation distance, r0=0.1/cos20=0.1064m, so evaluating ε estimates on the basis of rmax of 1.5m implies nrmax=1.5/0.106414 bins. The lowest number bin over which this separation distance can be centred is bin 8 (nrmax/2+1)andisevaluatedusingdatafrombins1and15.Thehighestnumberbinforwhichtheseparationdistancecanbeevaluatedis23,usingdatafrombins16and30.Sothebinrangeforwhich<math>1δ14 can all be evaluated is 8n23.

Note that the structure function can be calculated for bins outside this range, but not all of the desired separation distances can be evaluated, limiting the range available for the regression. Care should therefore be exercised in comparing the resulting ε results.

For each profile t, the squared velocity difference Δ2(n,δ,t) is evaluated for each of the bins in the range 8n23 and each of the separation distances 1δ14.

  1. If δ is even then the calculation based on the bin velocities for the bins symmetrically spaced either side of the evaluation bin. So for the first profile in the segment (t=1), bin n=8 and separation distance δ=2:

    Δ2(8,2,1)=[v(7,1)v(9,1)]2

    similarly for δ=10:

    Δ2(8,10,1)=[v(3,1)v(13,1)]2

  2. If δ is odd the calculation is complicated by the fact that the separation distance cannot be exactly centred on the bin, so the mean of the squared velocity difference options centred on the bin edges are used. Again using the example of the first profile in the segment (t=1) and bin n=8, but with separation distance δ=3:

    Δlo2(8,3,1)=[v(6,1)v(9,1)]2

    Δhi2(8,3,1)=[v(7,1)v(10,1)]2

    and

    Δ2(8,3,1)=Δlo2(8,3,1)+Δhi2(8,3,1)2

    similarly for δ=13:

    Δlo2(8,13,1)=[v(1,1)v(14,1)]2

    Δhi2(8,13,1)=[v(2,1)v(15,1)]2

    and

    Δ2(8,13,1)=Δlo2(8,13,1)+Δhi2(8,13,1)2

Having evaluated the squared velocity difference for the range of bins and separation distances for each of the profiles, the structure function is evaluated by taking the mean across the 300 profiles in the data segment i.e.

D(n,δ)=t=1300Δ2(n,δ,t)

if all options are evaluated.

Return to Bin-centred difference