Nomenclature
From Atomix
Background (total) velocity
| Symbol | Description | Units |
|---|---|---|
| <math>u</math> | zonal or longitudinal component of velocity | <math> \mathrm{m\, s^{-1}}</math> |
| <math>v</math> | meridional or transverse component of velocity | <math>\mathrm{m\, s^{-1}}</math> |
| <math>w</math> | vertical component of velocity | <math> \mathrm{m\, s^{-1}}</math> |
| <math>u_e</math> | error velocity | <math>\mathrm{m\, s^{-1}}</math> |
| V | velocity perpendicular to mean flow | <math>\mathrm{m\, s^{-1}}</math> |
| <math>W_d</math> | Profiler fall speed | <math>\mathrm{m\, s^{-1}}</math> |
| <math>U_P</math> | Flow speed past sensor | <math>\mathrm{m\, s^{-1}}</math> |
| b | Along-beam velocity from acoustic Doppler sensor | <math>\mathrm{m\, s^{-1}}</math> |
| <math> b^{\prime}</math> | Along-beam velocity from acoustic Doppler sensor with background flow deducted | <math>\mathrm{m\, s^{-1}}</math> |
| <math> \delta{z}</math> | Vertical size of measurement bin for acoustic Doppler sensor | <math>\mathrm{m}</math> |
| r | Along-beam distance from acoustic Doppler sensor | <math>\mathrm{m}</math> |
| <math> \delta{r}</math> | Along-beam bin size for acoustic Doppler sensor | <math>\mathrm{m}</math> |
| <math> \theta</math> | Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor | <math>^{\circ}</math> |
Turbulence properties
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\varepsilon</math> | The rate of dissipation of turbulent kinetic energy per unit mass by viscosity | <math>\mathrm{W\, kg^{-1}}</math> | |
| <math>B</math> | Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. | <math>B= \frac{g}{\rho} \overline{\rho'w'} </math> | <math>\mathrm{W\, kg^{-1}}</math> |
| <math>P</math> | The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>. | <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math> | <math>\mathrm{W\, kg^{-1}}</math> |
| <math>R_f</math> | Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. | <math>R_f = \frac{B}{P}</math> | |
| <math>\Gamma</math> | "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>. | <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math> | |
| <math>R_i</math> | (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared | <math>R_i = \frac{N^2}{S^2} </math> | |
| <math>\kappa_{\rho}</math> | Turbulent eddy diffusivity via the Osborn (1980) model | <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math> | <math>\mathrm{m^2\, s^{-1}}</math> |
| <math>D_{ll}</math> | Second-order longitudinal structure function | <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math> | <math>\mathrm{m^2\, s^{-2}}</math> |
Fluid properties and background gradients for turbulence calculations
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>S_P</math> | Practical salinity | <math> - </math> | |
| <math>T</math> | Temperature | <math> \mathrm{^{\circ}C } </math> | |
| <math>P</math> | Pressure | <math>\mathrm{dbar} </math> | |
| <math>\rho</math> | Density of water | <math> \rho = \rho\left(T,S_a,P \right)</math> | <math>\mathrm{kg\, m^{-3}} </math> |
| <math>\alpha</math> | Temperature coefficient of expansion | <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math> | <math> \mathrm{K^{-1}}</math> |
| <math>\beta</math> | Saline coefficient of contraction | <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math> | |
| <math>S</math> | Background velocity shear | <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math> | <math> \mathrm{s^{-1}} </math> |
| <math> \nu_{35} </math> | Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 | <math> \sim 1\times 10^{-6} </math> | <math> \mathrm{m^2\, s^{-1} } </math> |
| <math>\nu_{00}</math> | Temperature dependent kinematic viscosity of freshwater | <math>\sim 1\times 10^{-6} </math> | <math>\mathrm{m^2\, s^{-1} } </math> |
| <math>\Gamma_a </math> | Adiabatic temperature gradient -- salinity, temperature and pressure dependent | <math>\sim 1\times 10^{-4}</math> | <math>\mathrm{K\, dbar^{-1} } </math> |
| <math>N </math> | Background stratification, i.e buoyancy frequency | <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math> | <math>\mathrm{rad\, s^{-1} } </math> |
Theoretical Length and Time Scales
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\tau_N</math> | Buoyancy timescale | <math> \tau_N = \frac{1}{N}</math> | <math> \mathrm{s} </math> |
| <math>T_N</math> | Buoyancy period | <math> T_N = \frac{2\pi}{N}</math> | <math> \mathrm{s} </math> |
| <math>L_E</math> | Ellison length scale (limit of vertical displacement without irreversible mixing) | <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math> | <math> \mathrm{m} </math> |
| <math> L_Z</math> | Boundary (law of the wall) length scale | <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant | <math> \mathrm{m} </math> |
| <math>L_S</math> | Corssin length scale | <math> L_S = \sqrt{\varepsilon/S^3} </math> | <math> \mathrm{m} </math> |
| <math>L_K</math> | Kolmogorov length scale (smallest overturns) | <math>L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> | <math> \mathrm{m} </math> |
| <math>L_o</math> | Ozmidov length scale, measure of largest overturns in a stratified fluid | <math>L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2}</math> | <math> \mathrm{m} </math> |
| <math>L_T</math> | Thorpe length scale | <math>L_T</math> | <math> \mathrm{m} </math> |
| <math>z_w</math> | Distance from a boundary | <math>z_w</math> | <math> \mathrm{m} </math> |
Turbulence Spectrum
These variables are used to express the Turbulence spectrum expected shapes.
| Symbol | Description | Eqn | Units |
|---|---|---|---|
| <math>\Delta t</math> | Sampling interval | <math> \frac{1}{f_s} </math> | <math> \mathrm{s} </math> |
| <math>f_s</math> | Sampling rate | <math>f_s=\frac{1}{\Delta t} </math> | <math> \mathrm{s^{-1}} </math> |
| <math>\Delta s</math> | Sample spacing | <math> \Delta s = U_P \Delta t </math> | <math> \mathrm{m} </math> |
| <math>\Delta l</math> | Linear dimension of sampling volume (instrument dependent) | <math> \mathrm{m} </math> | |
| <math>f</math> | Cyclic frequency | <math>f=\frac{\omega}{2\pi}</math> | <math> \mathrm{Hz} </math> |
| <math>\omega</math> | Angular frequency | <math>\omega = 2\pi f</math> | <math> \mathrm{rad\, s^{-1}} </math> |
| <math>f_N</math> | Nyquist frequency | <math>f_N=0.5f_s</math> | <math> \mathrm{Hz} </math> |
| <math>k</math> | Cyclic wavenumber | <math>k=\frac{f}{U_P}</math> | <math> \mathrm{cpm} </math> |
| <math>\hat{k}</math> | Angular wavenumber | <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math> | <math> \mathrm{rad\, m^{-1}} </math> |
| <math>\tilde{k}</math> | Normalized wavenumber | e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math> | - |
| <math>\tilde{\Phi}</math> | Normalized velocity spectrum | e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math> | - |
| <math>\tilde{\Psi}</math> | Normalized shear spectrum | e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math> | - |
| <math>k_\Delta</math> | Nyquist wavenumber, based on sampling volume size <math>\Delta l</math> | <math>k_\Delta=\frac{0.5}{\Delta l}</math> | <math> \mathrm{cpm} </math> |
| <math>k_N</math> | Nyquist wavenumber, via Taylor's hypothesis | <math>k_N=\frac{f_N}{U_P}</math> | <math> \mathrm{cpm} </math> |
| <math>\Psi(k)</math> | Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum. | <math> \mathrm{s^{-2}\, cpm^{-1}}</math> | |
| <math>\Phi(k)</math> | Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum. | <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math> |
