The Goodman algorithm
The procedure is well described in Goodman et al. 2006 [1] Focusing on one specific direction, one specific shear probe, one can simply:
- compute the coherence squared
- and remove the vibration-coherent content of the shear spectrum using
where
To obtain statistical significance, it is recommended to compute the coherence/cross-spectra over 7 fft-segments. The vibration-coherent noise removal algorithm biases low the spectrum of shear in a frequency independent manner, and can be corrected using the number of vibration (or other types) of signals used to correct the measured shear spectra and the number of fit-segments used to estimate the shear spectrum. [2].
References
- ↑ L. Goodman and E. Levine and R. Lueck. 2006. On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Oceanic Technol.. doi:10.1175/JTECH1889.1
- ↑ R. G. Lueck, D. MacIntyre and and J. MacMillan. 2022. The bias in coherent noise removal. J. Atmos. Oceanic Technol.. doi:TBD
return to Flow chart for shear probes