Nomenclature: Difference between revisions

From Atomix
Rolf (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
 
(9 intermediate revisions by 2 users not shown)
Line 52: Line 52:
| r
| r
| Along-beam distance from acoustic Doppler sensor
| Along-beam distance from acoustic Doppler sensor
| <math>\mathrm{m}</math>
|-
| <math> \delta{r}_0</math>
| Along-beam bin size for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
| <math> \delta{r}</math>  
| <math> \delta{r}</math>  
| Along-beam bin size for acoustic Doppler sensor
| Along-beam bin separation for acoustic Doppler sensor
| <math>\mathrm{m}</math>  
| <math>\mathrm{m}</math>  
|-
|-
Line 79: Line 83:
| <math>\mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| <math>R_i</math>
| <math>B</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy.
| <math>R_i = \frac{N^2}{S^2} </math>
| <math>B= \frac{g}{\rho} \overline{\rho'w'} </math>
|  
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| <math>P</math>
| <math>P</math>
| The production of turbulence kinetic energy, in a steady uniform stratified shear flow, equals the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy through viscous friction, <math>\varepsilon</math> and the production of potential energy by the buoyancy flux, <math>B=-\frac{g}{\rho} \overline{\rho'w'} </math>.
| The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>.
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>  
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>  
| <math>\mathrm{m^2\, s^{-3}} = \mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{W\, kg^{-1}}</math>
|-
|-
| <math>R_f</math>
| <math>R_f</math>
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.  
| Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy.  
| <math>R_f = \frac{-B}{P}</math>  
| <math>R_f = \frac{B}{P}</math>  
|  
|  
|-
|-
| <math>\Gamma</math>
| <math>\Gamma</math>
| "Mixing coefficient"; in a stratified turbulent shear flow (where the production of turbulent kinetic energy by shear and the Reynolds stress, <math>P</math>, equals the rate of dissipation, <math>\varepsilon</math>, plus the buoyancy production, <math>B</math>), it is the ratio of the rate of potential energy due to buoyancy production to the rate of loss of kinetic energy through viscous friction.
| "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>.  
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
| <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>  
|
|-
| <math>R_i</math>
| (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared
| <math>R_i = \frac{N^2}{S^2} </math>
|  
|  
|-
|-
Line 104: Line 113:
| <math>\mathrm{m^2\, s^{-1}}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
|-
|-
| <math>D_{LL}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| Second-order longitudinal structure function
| <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}
Line 148: Line 157:
| <math>\beta</math>
| <math>\beta</math>
| Saline coefficient of contraction
| Saline coefficient of contraction
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_a}</math>
| <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
|  
|  
|-
|-
| <math>S</math>
| <math>S</math>
| Background velocity shear
| Background velocity shear
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} </math>
| <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math>
| <math> \mathrm{s^{-1}} </math>
| <math> \mathrm{s^{-1}} </math>
|-
|-

Latest revision as of 15:09, 2 June 2022


Background (total) velocity

Turbulence properties

Fluid properties and background gradients for turbulence calculations

Theoretical Length and Time Scales

Turbulence Spectrum