Kolmogorov length scale: Difference between revisions

From Atomix
mNo edit summary
m Change symbol eta for consistency with nomenclatre
Line 1: Line 1:
{{DefineConcept
{{DefineConcept
|parameter_name=Kolmogorov length scale
|parameter_name=Kolmogorov length scale
|description=Kolmogorov length scale <math>\eta</math>
|description=Kolmogorov length scale <math>L_k</math>
|article_type=Concept
|article_type=Concept
|instrument_type=
}}
}}
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
<math>L_k=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.

Revision as of 11:49, 19 November 2021


Short definition of Kolmogorov length scale (Kolmogorov length scale)
Kolmogorov length scale Lk

This is the common definition for Kolmogorov length scale, but other definitions maybe discussed within the wiki.

{{#default_form:DefineConcept}} {{#arraymap:|,|x||}}

Lk=(ν3ε)1/4 where ν is the kinematic viscosity of the fluid and ε is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.