Nomenclature: Difference between revisions

From Atomix
mNo edit summary
Rolf (talk | contribs)
mNo edit summary
Line 164: Line 164:
| Background velocity shear
| Background velocity shear
| background_velocity_shear
| background_velocity_shear
| <math> S = \frac{\partial |U|}{\partial z}</math>
| <math> S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2}</math>
| s<math>^{-1}</math>
| s<math>^{-1}</math>
|-
|-

Revision as of 17:04, 23 April 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Background (total) velocity

Parameter name Symbol Description Standard long name Units
EAST_VEL [math]\displaystyle{ u }[/math] zonal velocity eastward_velocity m s[math]\displaystyle{ ^{-1} }[/math]
NORTH_VEL [math]\displaystyle{ v }[/math] meridional velocity northward_velocity m s[math]\displaystyle{ ^{-1} }[/math]
UP_VEL [math]\displaystyle{ W }[/math] vertical velocity upward_velocity m s[math]\displaystyle{ ^{-1} }[/math]
ERROR_VEL [math]\displaystyle{ u }[/math] error velocity error_velocity m s[math]\displaystyle{ ^{-1} }[/math]
U_VEL [math]\displaystyle{ U }[/math] velocity parellel to mean flow meanflow_velocity m s[math]\displaystyle{ ^{-1} }[/math]
V_VEL [math]\displaystyle{ V }[/math] velocity perpendicular to mean flow crossflow_velocity m s[math]\displaystyle{ ^{-1} }[/math]
Drop_Speed [math]\displaystyle{ W_d }[/math] Profiler fall speed mean_drop_speed m s[math]\displaystyle{ ^{-1} }[/math]
FlowPast_Speed [math]\displaystyle{ U_fp }[/math] Flow speed past sensor mean_velocity_past_turbulence_sensor m s[math]\displaystyle{ ^{-1} }[/math]
AlongBeam_Velocity [math]\displaystyle{ b }[/math] Along-beam velocity from acoustic Doppler sensor observed_velocity_along_an_acoustic_beam m s[math]\displaystyle{ ^{-1} }[/math]
AlongBeam_Residual_Velocity [math]\displaystyle{ b^{\prime} }[/math] Along-beam velocity from acoustic Doppler sensor with background flow deducted residual_velocity_along_an_acoustic_beam m s[math]\displaystyle{ ^{-1} }[/math]
Vertical_Bin_Size [math]\displaystyle{ \delta{z} }[/math] Vertical size of measurement bin for acoustic Doppler sensor vertical_bin_size m
AlongBeam_Distance [math]\displaystyle{ r }[/math] Along-beam distance from acoustic Doppler sensor distance_along_an_acoustic_beam m
AlongBeam_Bin_Size [math]\displaystyle{ \delta{r} }[/math] Along-beam bin size for acoustic Doppler sensor bin_size_along_an_acoustic_beam m
Beam_Angle [math]\displaystyle{ \theta }[/math] Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor acoustic_beam_angle degree

Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI [math]\displaystyle{ \varepsilon }[/math] Turbulent kinetic energy dissipation rate tke_dissipation W/kg
RI [math]\displaystyle{ Ri }[/math] Richardson number richardson_number [math]\displaystyle{ Ri = \frac{N^2}{S^2} }[/math]
RI_F [math]\displaystyle{ Ri_f }[/math] Flux gradient Richardson number flux_grad_richardson_number [math]\displaystyle{ \frac{B}{P} }[/math] or Ivey & Immerger? Karan et cie
Krho [math]\displaystyle{ \kappa_\rho }[/math] Turbulent diffusivity turbulent_diffusivity [math]\displaystyle{ \kappa = \Gamma \varepsilon N^{-2} }[/math] m[math]\displaystyle{ ^2 }[/math]s[math]\displaystyle{ ^{-1} }[/math]
DLL [math]\displaystyle{ D_{LL} }[/math] Second-order longitudinal structure function second_order_longitudinal_structure_function [math]\displaystyle{ D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle }[/math] m[math]\displaystyle{ ^2 }[/math]s[math]\displaystyle{ ^{-2} }[/math]

Fluid properties and background gradients for turbulence calculations

Parameter Name Symbol Description Standard long name Eqn Units
S [math]\displaystyle{ S }[/math] Background velocity shear background_velocity_shear [math]\displaystyle{ S = \left( \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right)^{1/2} }[/math] s[math]\displaystyle{ ^{-1} }[/math]
KVISC35 [math]\displaystyle{ \nu }[/math] Kinematic viscosity of water for seawater at 35 and 20 [math]\displaystyle{ ^o }[/math]C seawater_kinematic_viscosity_at_35psu [math]\displaystyle{ 1\times 10^{-6} }[/math] m2/s
N [math]\displaystyle{ N }[/math] Background stratification, i.e buoyancy frequency background_buoyancy_frequency [math]\displaystyle{ N = \sqrt{\frac{-g}{\bar{\rho}} \frac{\partial\bar{\rho}}{\partial z}} }[/math] rad/s

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N [math]\displaystyle{ \tau_N }[/math] Buoyancy timescale buoyancy_time_scale [math]\displaystyle{ \tau_N = \frac{2\pi}{N} }[/math] s
L_E [math]\displaystyle{ L_E }[/math] Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale [math]\displaystyle{ L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z} }[/math] m
L_RHO [math]\displaystyle{ L_\rho }[/math] Density length scale density_length_scale [math]\displaystyle{ L_\rho }[/math] m
L_S [math]\displaystyle{ L_S }[/math] Corssin length scale Corssin_shear_length_scale [math]\displaystyle{ L_S = \sqrt{\varepsilon/S^3} }[/math] m
L_K [math]\displaystyle{ \eta }[/math] Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale [math]\displaystyle{ \eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}=\frac{1}{2\pi\hat{k}_K} }[/math] m
L_O [math]\displaystyle{ L_o }[/math] Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale [math]\displaystyle{ L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2} }[/math] m
L_T [math]\displaystyle{ L_T }[/math] Thorp length scale Thorpe_stratification_length_scale [math]\displaystyle{ L_T }[/math] m

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements [math]\displaystyle{ \left(\bar{u}_1\frac{\partial }{\partial{x}} = \frac{\partial}{\partial{t}}\right) }[/math]


  • Missing the y-axi variable. CEB proposes:
    • [math]\displaystyle{ \Psi_{variable} }[/math] for model/theoretical spectrum of variable e.g., du/dx or u
    • [math]\displaystyle{ \Phi_{variable} }[/math] for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] s
[math]\displaystyle{ \Delta s }[/math] Sampling volume dimension m
[math]\displaystyle{ f }[/math] Frequency [math]\displaystyle{ \frac{\omega}{2\pi} }[/math] Hz
[math]\displaystyle{ f_n }[/math] Nyquist frequency [math]\displaystyle{ f_n=0.5f_s }[/math] Hz
[math]\displaystyle{ f_s }[/math] Sampling frequency [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] Hz
[math]\displaystyle{ k }[/math] Wavenumbers (angular) [math]\displaystyle{ k=\frac{f}{\bar{u}}=2\pi\hat{k} }[/math] rad/m
[math]\displaystyle{ \hat{k} }[/math] Wavenumbers [math]\displaystyle{ \hat{k}=\frac{k}{2\pi} }[/math] cpm
[math]\displaystyle{ \hat{k}_\Delta }[/math] Nyquist wavenumber, based on sampling volume's size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ \hat{k}_\Delta=\frac{0.5}{\Delta l} }[/math] cpm
[math]\displaystyle{ \hat{k}_n }[/math] Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) [math]\displaystyle{ \hat{k}_n=\frac{f_n}{u} }[/math] cpm
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ 2\pi f }[/math] rad/s

Supplementary Data required for computing Turbulence

Channel Shear Probes ADCP ADVs
Ax x x x
Ay x x x
Az x x x