Nomenclature: Difference between revisions

From Atomix
Rolf (talk | contribs)
No edit summary
Rolf (talk | contribs)
mNo edit summary
Line 140: Line 140:
| turbulent_diffusivity
| turbulent_diffusivity
| <math> \kappa = \Gamma \varepsilon N^{-2} </math>
| <math> \kappa = \Gamma \varepsilon N^{-2} </math>
| m<math>^2</math>s<math>^{-1}</math>
| <math>\mathrm{m^2\, s^{-1}}</math>
|-
|-
| DLL
| DLL

Revision as of 17:10, 23 April 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Background (total) velocity

Parameter name Symbol Description Standard long name Units
EAST_VEL u zonal velocity eastward_velocity m s1
NORTH_VEL v meridional velocity northward_velocity m s1
UP_VEL W vertical velocity upward_velocity m s1
ERROR_VEL ue error velocity error_velocity m s1
U_VEL U velocity parellel to mean flow meanflow_velocity m s1
V_VEL V velocity perpendicular to mean flow crossflow_velocity m s1
Drop_Speed Wd Profiler fall speed mean_drop_speed m s1
FlowPast_Speed UP Flow speed past sensor mean_velocity_past_turbulence_sensor m s1
AlongBeam_Velocity b Along-beam velocity from acoustic Doppler sensor observed_velocity_along_an_acoustic_beam m s1
AlongBeam_Residual_Velocity b Along-beam velocity from acoustic Doppler sensor with background flow deducted residual_velocity_along_an_acoustic_beam m s1
Vertical_Bin_Size δz Vertical size of measurement bin for acoustic Doppler sensor vertical_bin_size m
AlongBeam_Distance r Along-beam distance from acoustic Doppler sensor distance_along_an_acoustic_beam m
AlongBeam_Bin_Size δr Along-beam bin size for acoustic Doppler sensor bin_size_along_an_acoustic_beam m
Beam_Angle θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor acoustic_beam_angle degree

Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI ε Turbulent kinetic energy dissipation rate tke_dissipation Wkg1
RI Ri Richardson number richardson_number Ri=N2S2
RI_F Rif Flux gradient Richardson number flux_grad_richardson_number BP or Ivey & Immerger? Karan et cie
Krho κρ Turbulent diffusivity turbulent_diffusivity κ=ΓεN2 m2s1
DLL DLL Second-order longitudinal structure function second_order_longitudinal_structure_function DLL=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Parameter Name Symbol Description Standard long name Eqn Units
S S Background velocity shear background_velocity_shear S=((Uz)2+(Vz)2)1/2 s1
KVISC35 ν Kinematic viscosity of water for seawater at 35 and 20 oC seawater_kinematic_viscosity_at_35psu 1×106 m2/s
N N Background stratification, i.e buoyancy frequency background_buoyancy_frequency N=gρ¯ρ¯z rad/s

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N τN Buoyancy timescale buoyancy_time_scale τN=2πN s
L_E LE Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale LE=ρ21/2ρ/z m
L_RHO Lρ Density length scale density_length_scale Lρ m
L_S LS Corssin length scale Corssin_shear_length_scale LS=ε/S3 m
L_K η Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale η=(ν3ε)1/4=12πk^K m
L_O Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale Lo=(εN3)1/2 m
L_T LT Thorp length scale Thorpe_stratification_length_scale LT m

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements (u¯1x=t)


  • Missing the y-axi variable. CEB proposes:
    • Ψvariable for model/theoretical spectrum of variable e.g., du/dx or u
    • Φvariable for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
Δt Sampling interval 1fs s
Δs Sampling volume dimension m
f Frequency ω2π Hz
fn Nyquist frequency fn=0.5fs Hz
fs Sampling frequency fs=1Δt Hz
k Wavenumbers (angular) k=fu¯=2πk^ rad/m
k^ Wavenumbers k^=k2π cpm
k^Δ Nyquist wavenumber, based on sampling volume's size Δl k^Δ=0.5Δl cpm
k^n Nyquist wavenumber, via Taylor's hypothesis (temporal measurements) k^n=fnu cpm
ω Angular frequency 2πf rad/s

Supplementary Data required for computing Turbulence

Channel Shear Probes ADCP ADVs
Ax x x x
Ay x x x
Az x x x