Nomenclature: Difference between revisions

From Atomix
Rolf (talk | contribs)
No edit summary
Rolf (talk | contribs)
No edit summary
Line 160: Line 160:
! Units
! Units
|-
|-
| Z
| SAL
| <math>z</math>
| vertical coordinate -- positive upwards
| vertical_coordinate
|
| <math>\mathrm{m} </math>
|-
| G
| <math>g</math>
| acceleration of gravity
| acceleration_of_gravity
| <math> \sim 9.81 </math>
| <math>\mathrm{m\, s^{-2}} </math>
|-
| SALINITY
| <math>S_a</math>
| <math>S_a</math>
| Salinity
| Salinity

Revision as of 19:00, 26 April 2021

Frame of reference

  • Define frame of reference, and notation. Use u,v,w and x,y, and z?
  • Dumping a sketch would be useful


Reynold's Decomposition

  • Variable names for Decomposition of total, mean, turbulent and waves.


Background (total) velocity

Parameter name Symbol Description Standard long name Units
EAST_VEL u zonal velocity eastward_velocity ms1
NORTH_VEL v meridional velocity northward_velocity ms1
UP_VEL W vertical velocity upward_velocity ms1
ERROR_VEL ue error velocity error_velocity ms1
U_VEL U velocity parellel to mean flow meanflow_velocity ms1
V_VEL V velocity perpendicular to mean flow crossflow_velocity ms1
Drop_Speed Wd Profiler fall speed mean_drop_speed ms1
FlowPast_Speed UP Flow speed past sensor mean_velocity_past_turbulence_sensor ms1
AlongBeam_Velocity b Along-beam velocity from acoustic Doppler sensor observed_velocity_along_an_acoustic_beam ms1
AlongBeam_Residual_Velocity b Along-beam velocity from acoustic Doppler sensor with background flow deducted residual_velocity_along_an_acoustic_beam ms1
Vertical_Bin_Size δz Vertical size of measurement bin for acoustic Doppler sensor vertical_bin_size m
AlongBeam_Distance r Along-beam distance from acoustic Doppler sensor distance_along_an_acoustic_beam m
AlongBeam_Bin_Size δr Along-beam bin size for acoustic Doppler sensor bin_size_along_an_acoustic_beam m
Beam_Angle θ Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor acoustic_beam_angle

Turbulence properties

Parameter name Symbol Description Standard long name Eqn Units
EPSI ε Turbulent kinetic energy dissipation rate tke_dissipation Wkg1
RI Ri Richardson number richardson_number Ri=N2S2
RI_F Rif Flux gradient Richardson number flux_grad_richardson_number BP or Ivey & Immerger? Karan et cie
Krho κρ Turbulent diffusivity turbulent_diffusivity κ=ΓεN2 m2s1
DLL DLL Second-order longitudinal structure function second_order_longitudinal_structure_function DLL=[b(r)b(r+nδr)]2 m2s2

Fluid properties and background gradients for turbulence calculations

Parameter Name Symbol Description Standard long name Eqn Units
SAL Sa Salinity Salinity 35
TEMP T Temperature Temperature 240 C
PRES P Pressure Pressure 0  1×104 dbar
DENSITY ρ Density of water Density ρ=ρ(T,Sa,P) kgm3
ALPHA α Temperature coefficient of expansion Temperature_coefficient_of_expansion α=1ρρT K1
BETA β Saline coefficient of contraction Saline_coefficient_of_contraction β=1ρρSa
S S Background velocity shear background_velocity_shear S=((Uz)2+(Vz)2)1/2 s1
KVISC35 ν35 Temperature dependent kinematic viscosity of seawater at a salinity of 35 seawater_kinematic_viscosity_at_35psu 1×106 m2s1
KVISC00 ν00 Temperature dependent kinematic viscosity of freshwater freshwater_kinematic_viscosity 1×106 m2s1
GAMMA_A Γ Adiabatic temperature gradient -- salinity, temperature and pressure dependent Rate of change of temperature due to pressure 1×104 Kdbar1
N N Background stratification, i.e buoyancy frequency background_buoyancy_frequency N2=g[α(Γ+Tz)βSaz] rads1

Theoretical Length and Time Scales

Parameter Symbol Description Standard long name Eqn Units
T_N τN Buoyancy timescale buoyancy_time_scale τN=1N s
T_P TN Buoyancy period buoyancy_period TN=2πN s
L_E LE Ellison length scale (limit of vertical displacement without irreversible mixing) Eliison_lenght_scale LE=ρ21/2ρ/z m
L_RHO Lρ Density length scale density_length_scale Lρ m
L_S LS Corssin length scale Corssin_shear_length_scale LS=ε/S3 m
L_K η Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale η=(ν3ε)1/4 m
L_K LK Kolmogorov length scale (smallest overturns) Kolmogorov_length_scale LK=(ν3ε)1/4 m
L_O Lo Ozmidov length scale, measure of largest overturns in a stratified fluid Ozmidov_stratification_length_scale Lo=(εN3)1/2 m
L_T LT Thorp length scale Thorpe_stratification_length_scale LT m

Turbulence Spectrum

Taylor's Frozen Turbulence for converting temporal to spatial measurements. Convert time derivatives to spatial gradients along the direction of profiling using

x=1UPt .

Convert frequency spectra into wavenumber spectra using

k=f/UP and Ψ(k)=UPΨ(f) .


  • Missing the y-axi variable. CEB proposes:
    • Ψvariable for model/theoretical spectrum of variable e.g., du/dx or u
    • Φvariable for observed spectrum of variable e.g., du/dx or u
  • Lowest frequency and wavenumber resolvable
Symbol Description Eqn Units
Δt Sampling interval 1fs s
fs Sampling rate fs=1Δt s1
Δs Sample spacing Δs=UPΔt m
Δl Linear dimension of sampling volume (instrument dependent) m
f Cyclic frequency f=ω2π Hz
ω Angular frequency ω=2πf rads1
fN Nyquist frequency fN=0.5fs Hz
k Cyclic wavenumber k=fUP cpm
k^ Angular wavenumber k^=ωUP=2πk radm1
kΔ Nyquist wavenumber, based on sampling volume size Δl kΔ=0.5Δl cpm
kN Nyquist wavenumber, via Taylor's hypothesis kN=fNUP cpm

Supplementary Data required for computing Turbulence

Channel Shear Probes ADCP ADVs
Ax x x x
Ay x x x
Az x x x