Nomenclature: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Rolf (talk | contribs)
No edit summary
Line 111: Line 111:
| <math>D_{ll}</math>
| <math>D_{ll}</math>
| Second-order longitudinal structure function
| Second-order longitudinal structure function
| <math>D_{LL} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
| <math>\mathrm{m^2\, s^{-2}}</math>
|}
|}

Revision as of 00:31, 24 May 2022


Background (total) velocity

Symbol Description Units
<math>u</math> zonal or longitudinal component of velocity <math> \mathrm{m\, s^{-1}}</math>
<math>v</math> meridional or transverse component of velocity <math>\mathrm{m\, s^{-1}}</math>
<math>w</math> vertical component of velocity <math> \mathrm{m\, s^{-1}}</math>
<math>u_e</math> error velocity <math>\mathrm{m\, s^{-1}}</math>
V velocity perpendicular to mean flow <math>\mathrm{m\, s^{-1}}</math>
<math>W_d</math> Profiler fall speed <math>\mathrm{m\, s^{-1}}</math>
<math>U_P</math> Flow speed past sensor <math>\mathrm{m\, s^{-1}}</math>
b Along-beam velocity from acoustic Doppler sensor <math>\mathrm{m\, s^{-1}}</math>
<math> b^{\prime}</math> Along-beam velocity from acoustic Doppler sensor with background flow deducted <math>\mathrm{m\, s^{-1}}</math>
<math> \delta{z}</math> Vertical size of measurement bin for acoustic Doppler sensor <math>\mathrm{m}</math>
r Along-beam distance from acoustic Doppler sensor <math>\mathrm{m}</math>
<math> \delta{r}</math> Along-beam bin size for acoustic Doppler sensor <math>\mathrm{m}</math>
<math> \theta</math> Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor <math>^{\circ}</math>

Turbulence properties

Symbol Description Eqn Units
<math>\varepsilon</math> The rate of dissipation of turbulent kinetic energy per unit mass by viscosity <math>\mathrm{W\, kg^{-1}}</math>
<math>B</math> Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. <math>B= \frac{g}{\rho} \overline{\rho'w'} </math> <math>\mathrm{W\, kg^{-1}}</math>
<math>P</math> The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy, <math>\varepsilon</math>, and the production of potential energy by the buoyancy flux, <math>B</math>. <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math> <math>\mathrm{W\, kg^{-1}}</math>
<math>R_f</math> Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. <math>R_f = \frac{B}{P}</math>
<math>\Gamma</math> "Mixing coefficient"; The ratio of the rate of production of potential energy, <math>B</math>, to the rate of dissipation of kinetic energy, <math>\varepsilon</math>. <math>\Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f}</math>
<math>R_i</math> (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared <math>R_i = \frac{N^2}{S^2} </math>
<math>\kappa_{\rho}</math> Turbulent eddy diffusivity via the Osborn (1980) model <math>\kappa_{\rho} = \Gamma \varepsilon N^{-2}</math> <math>\mathrm{m^2\, s^{-1}}</math>
<math>D_{ll}</math> Second-order longitudinal structure function <math>D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle</math> <math>\mathrm{m^2\, s^{-2}}</math>

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
<math>S_P</math> Practical salinity <math> - </math>
<math>T</math> Temperature <math> \mathrm{^{\circ}C } </math>
<math>P</math> Pressure <math>\mathrm{dbar} </math>
<math>\rho</math> Density of water <math> \rho = \rho\left(T,S_a,P \right)</math> <math>\mathrm{kg\, m^{-3}} </math>
<math>\alpha</math> Temperature coefficient of expansion <math> \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T}</math> <math> \mathrm{K^{-1}}</math>
<math>\beta</math> Saline coefficient of contraction <math> \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P}</math>
<math>S</math> Background velocity shear <math> S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} </math> <math> \mathrm{s^{-1}} </math>
<math> \nu_{35} </math> Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 <math> \sim 1\times 10^{-6} </math> <math> \mathrm{m^2\, s^{-1} } </math>
<math>\nu_{00}</math> Temperature dependent kinematic viscosity of freshwater <math>\sim 1\times 10^{-6} </math> <math>\mathrm{m^2\, s^{-1} } </math>
<math>\Gamma_a </math> Adiabatic temperature gradient -- salinity, temperature and pressure dependent <math>\sim 1\times 10^{-4}</math> <math>\mathrm{K\, dbar^{-1} } </math>
<math>N </math> Background stratification, i.e buoyancy frequency <math>N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] </math> <math>\mathrm{rad\, s^{-1} } </math>

Theoretical Length and Time Scales

Symbol Description Eqn Units
<math>\tau_N</math> Buoyancy timescale <math> \tau_N = \frac{1}{N}</math> <math> \mathrm{s} </math>
<math>T_N</math> Buoyancy period <math> T_N = \frac{2\pi}{N}</math> <math> \mathrm{s} </math>
<math>L_E</math> Ellison length scale (limit of vertical displacement without irreversible mixing) <math>L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z}</math> <math> \mathrm{m} </math>
<math> L_Z</math> Boundary (law of the wall) length scale <math> L_Z=0.39z_w </math> with 0.39 being von Kármán's constant <math> \mathrm{m} </math>
<math>L_S</math> Corssin length scale <math> L_S = \sqrt{\varepsilon/S^3} </math> <math> \mathrm{m} </math>
<math>L_K</math> Kolmogorov length scale (smallest overturns) <math>L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> <math> \mathrm{m} </math>
<math>L_o</math> Ozmidov length scale, measure of largest overturns in a stratified fluid <math>L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2}</math> <math> \mathrm{m} </math>
<math>L_T</math> Thorpe length scale <math>L_T</math> <math> \mathrm{m} </math>
<math>z_w</math> Distance from a boundary <math>z_w</math> <math> \mathrm{m} </math>

Turbulence Spectrum

These variables are used to express the Turbulence spectrum expected shapes.


Symbol Description Eqn Units
<math>\Delta t</math> Sampling interval <math> \frac{1}{f_s} </math> <math> \mathrm{s} </math>
<math>f_s</math> Sampling rate <math>f_s=\frac{1}{\Delta t} </math> <math> \mathrm{s^{-1}} </math>
<math>\Delta s</math> Sample spacing <math> \Delta s = U_P \Delta t </math> <math> \mathrm{m} </math>
<math>\Delta l</math> Linear dimension of sampling volume (instrument dependent) <math> \mathrm{m} </math>
<math>f</math> Cyclic frequency <math>f=\frac{\omega}{2\pi}</math> <math> \mathrm{Hz} </math>
<math>\omega</math> Angular frequency <math>\omega = 2\pi f</math> <math> \mathrm{rad\, s^{-1}} </math>
<math>f_N</math> Nyquist frequency <math>f_N=0.5f_s</math> <math> \mathrm{Hz} </math>
<math>k</math> Cyclic wavenumber <math>k=\frac{f}{U_P}</math> <math> \mathrm{cpm} </math>
<math>\hat{k}</math> Angular wavenumber <math>\hat{k}=\frac{\omega}{U_P} = 2\pi k</math> <math> \mathrm{rad\, m^{-1}} </math>
<math>\tilde{k}</math> Normalized wavenumber e.g., <math>\tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4}</math> -
<math>\tilde{\Phi}</math> Normalized velocity spectrum e.g., <math>\tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k)</math> -
<math>\tilde{\Psi}</math> Normalized shear spectrum e.g., <math>\tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k)</math> -
<math>k_\Delta</math> Nyquist wavenumber, based on sampling volume size <math>\Delta l</math> <math>k_\Delta=\frac{0.5}{\Delta l}</math> <math> \mathrm{cpm} </math>
<math>k_N</math> Nyquist wavenumber, via Taylor's hypothesis <math>k_N=\frac{f_N}{U_P}</math> <math> \mathrm{cpm} </math>
<math>\Psi(k)</math> Shear spectrum. Use <math>\Psi_1</math>, <math>\Psi_2</math> to distinguish the orthogonal components of the shear. Use <math>\Psi_N</math> for the Nasmyth spectrum, <math>\Psi_{PK}</math> for the Panchev-Kesich spectrum and <math>\Psi_L</math> for the Lueck spectrum. <math> \mathrm{s^{-2}\, cpm^{-1}}</math>
<math>\Phi(k)</math> Velocity spectrum. Use <math>\Phi_u</math>, <math>\Phi_v</math>, <math>\Phi_v</math>, or <math>\Phi_1</math>, <math>\Phi_2</math> , <math>\Phi_3</math> for the different orthogonal components of the velocity. Use <math>\Phi_K</math> for the Kolmogorov spectrum. <math> \mathrm{m^2\, s^{-2}\, cpm^{-1}} </math>