Kolmogorov length scale: Difference between revisions
From Atomix
No edit summary |
mNo edit summary |
||
Line 2: | Line 2: | ||
|parameter_name=Kolmogorov length scale | |parameter_name=Kolmogorov length scale | ||
|description=Kolmogorov length scale <math>\eta</math> | |description=Kolmogorov length scale <math>\eta</math> | ||
|article_type=Concept | |||
|instrument_type= | |instrument_type= | ||
}} | }} | ||
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> | <math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> | ||
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations. | where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations. |
Revision as of 13:24, 14 October 2021
Short definition of Kolmogorov length scale (Kolmogorov length scale) |
---|
Kolmogorov length scale [math]\displaystyle{ \eta }[/math] |
This is the common definition for Kolmogorov length scale, but other definitions maybe discussed within the wiki.
[math]\displaystyle{ \eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4} }[/math]
where [math]\displaystyle{ \nu }[/math] is the kinematic viscosity of the fluid and [math]\displaystyle{ \varepsilon }[/math] is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.