Kolmogorov length scale: Difference between revisions

From Atomix
No edit summary
mNo edit summary
Line 2: Line 2:
|parameter_name=Kolmogorov length scale
|parameter_name=Kolmogorov length scale
|description=Kolmogorov length scale <math>\eta</math>
|description=Kolmogorov length scale <math>\eta</math>
|article_type=Concept
|instrument_type=
|instrument_type=
}}
}}
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.

Revision as of 13:24, 14 October 2021


Short definition of Kolmogorov length scale (Kolmogorov length scale)
Kolmogorov length scale [math]\displaystyle{ \eta }[/math]

This is the common definition for Kolmogorov length scale, but other definitions maybe discussed within the wiki.


[math]\displaystyle{ \eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4} }[/math] where [math]\displaystyle{ \nu }[/math] is the kinematic viscosity of the fluid and [math]\displaystyle{ \varepsilon }[/math] is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.