Processing your ADCP data using structure function techniques: Difference between revisions

From Atomix
Yuengdjern (talk | contribs)
No edit summary
Yuengdjern (talk | contribs)
No edit summary
Line 3: Line 3:
# Calculate the [[along-beam velocity fluctuation]] time-series in each bin <math>n</math>, where [<math>v’(n, t)</math>] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
# Calculate the [[along-beam velocity fluctuation]] time-series in each bin <math>n</math>, where [<math>v’(n, t)</math>] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
# Select the maximum distance (<math>r_{max}</math>) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [<math>n_{\text{rmax}} = r_{max} / r_0</math>]
# Select the maximum distance (<math>r_{max}</math>) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [<math>n_{\text{rmax}} = r_{max} / r_0</math>]
# Calculate the structure function <math>D</math> for all possible bin separations <math>\delta</math> using either a [[bin-centred difference scheme]] or a [[forward-difference]] scheme. Consider [[Final data review (QA2) | QA2 requirements]] when choosing differencing scheme.  
# Calculate the structure function <math>D_{ll}</math> for all possible bin separations <math>\delta</math> using either a [[bin-centred difference scheme]] or a [[forward-difference]] scheme. Consider [[Final data review (QA2) | QA2 requirements]] when choosing differencing scheme.  
# Perform a regression of <math>D(n,\delta)</math> against <math>(\delta r_0)^{2/3}</math> for the appropriate range of bins and <math>\delta</math>r<sub>0</sub> separation distances. [JMM: THE FOLLOWING ITEMS ARE CONFUSING. SINCE THIS IS BEST PRACTICE, CAN WE JUST RECOMMEND ONE METHOD?]
# Perform a regression of <math>D_{ll}(n,\delta)</math> against <math>(\delta r_0)^{2/3}</math> for the appropriate range of bins and <math>\delta</math>r<sub>0</sub> separation distances. [JMM: THE FOLLOWING ITEMS ARE CONFUSING. SINCE THIS IS BEST PRACTICE, CAN WE JUST RECOMMEND ONE METHOD?]
## If  <math>D(n,\delta)</math> was evaluated using a forward-difference scheme, the regression is done for the combined data from all bins in the selected range, hence the maximum number of <math>D(n, \delta)</math> values for each separation distance will be the number of bins in the range less 1 for <math>\delta</math> = 1, reducing by 1 for each increment in <math>\delta</math>, with the regression ultimately yielding a single  <math>\varepsilon</math> value for the data segment  
## If  <math>D_{ll}(n,\delta)</math> was evaluated using a forward-difference scheme, the regression is done for the combined data from all bins in the selected range, hence the maximum number of <math>D_{ll}(n, \delta)</math> values for each separation distance will be the number of bins in the range less 1 for <math>\delta</math> = 1, reducing by 1 for each increment in <math>\delta</math>, with the regression ultimately yielding a single  <math>\varepsilon</math> value for the data segment  
## If <math>D(n,\delta)</math> was evaluated using a bin-centred difference scheme, the regression can either be done:
## If <math>D_{ll}(n,\delta)</math> was evaluated using a bin-centred difference scheme, the regression can either be done:
##* for each bin individually, with a single <math>D(n, \delta)</math> for each separation distance, ultimately yielding an <math>\varepsilon</math> for each bin; or
##* for each bin individually, with a single <math>D(n, \delta)</math> for each separation distance, ultimately yielding an <math>\varepsilon</math> for each bin; or
##* by combining the data for all of the bins, with each separation distance having a <math>D(n, \delta)</math> value for each bin, with the regression again ultimately yielding a single <math>\varepsilon</math> value for the data segment
##* by combining the data for all of the bins, with each separation distance having a <math>D_{ll}(n, \delta)</math> value for each bin, with the regression again ultimately yielding a single <math>\varepsilon</math> value for the data segment
## The regression is typically done as a least-squares fit, either as: <br /><br /> <math>D = a_0 + a_1 (\delta r_0)^{2/3}</math>; or as <br /> <math>D = a_0 + a_1 (\delta r_0)^{2/3}+a_3((\delta r_0)^{2/3})^3 </math> <br /><br /> the former being the [[canonical structure function method | canonical method]] that excludes non-turbulent velocity differences between bins, whereas the latter is a [[modified structure function method | modified method]] that includes non-turbulent velocity differences between bins due to any oscillatory signal (e.g. surface waves, motion of the ADCP on a mooring).   
## The regression is typically done as a least-squares fit, either as: <br /><br /> <math>D_{LL} = a_0 + a_1 (\delta r_0)^{2/3}</math>; or as <br /> <math>D_{ll} = a_0 + a_1 (\delta r_0)^{2/3}+a_3((\delta r_0)^{2/3})^3 </math> <br /><br /> the former being the [[canonical structure function method | canonical method]] that excludes non-turbulent velocity differences between bins, whereas the latter is a [[modified structure function method | modified method]] that includes non-turbulent velocity differences between bins due to any oscillatory signal (e.g. surface waves, motion of the ADCP on a mooring).   
# Use the coefficient <math>a_1</math> to calculate <math>\varepsilon</math> as <br /><br /> <math>\varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3}</math> <br /><br /> where <math>C_2</math> is an [[ Structure function empirical constant | empirical constant]], typically taken as 2.0 or 2.1.  
# Use the coefficient <math>a_1</math> to calculate <math>\varepsilon</math> as <br /><br /> <math>\varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3}</math> <br /><br /> where <math>C_2</math> is an [[ Structure function empirical constant | empirical constant]], typically taken as 2.0 or 2.1.  



Revision as of 15:58, 15 November 2021

To calculate the dissipation rate at a specific range bin and a specific time ensemble:

  1. Extract or compute the along-beam bin center separation [[math]\displaystyle{ r_0 }[/math]] based on the instrument geometry
  2. Calculate the along-beam velocity fluctuation time-series in each bin [math]\displaystyle{ n }[/math], where [[math]\displaystyle{ v’(n, t) }[/math]] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
  3. Select the maximum distance ([math]\displaystyle{ r_{max} }[/math]) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [[math]\displaystyle{ n_{\text{rmax}} = r_{max} / r_0 }[/math]]
  4. Calculate the structure function [math]\displaystyle{ D_{ll} }[/math] for all possible bin separations [math]\displaystyle{ \delta }[/math] using either a bin-centred difference scheme or a forward-difference scheme. Consider QA2 requirements when choosing differencing scheme.
  5. Perform a regression of [math]\displaystyle{ D_{ll}(n,\delta) }[/math] against [math]\displaystyle{ (\delta r_0)^{2/3} }[/math] for the appropriate range of bins and [math]\displaystyle{ \delta }[/math]r0 separation distances. [JMM: THE FOLLOWING ITEMS ARE CONFUSING. SINCE THIS IS BEST PRACTICE, CAN WE JUST RECOMMEND ONE METHOD?]
    1. If [math]\displaystyle{ D_{ll}(n,\delta) }[/math] was evaluated using a forward-difference scheme, the regression is done for the combined data from all bins in the selected range, hence the maximum number of [math]\displaystyle{ D_{ll}(n, \delta) }[/math] values for each separation distance will be the number of bins in the range less 1 for [math]\displaystyle{ \delta }[/math] = 1, reducing by 1 for each increment in [math]\displaystyle{ \delta }[/math], with the regression ultimately yielding a single [math]\displaystyle{ \varepsilon }[/math] value for the data segment
    2. If [math]\displaystyle{ D_{ll}(n,\delta) }[/math] was evaluated using a bin-centred difference scheme, the regression can either be done:
      • for each bin individually, with a single [math]\displaystyle{ D(n, \delta) }[/math] for each separation distance, ultimately yielding an [math]\displaystyle{ \varepsilon }[/math] for each bin; or
      • by combining the data for all of the bins, with each separation distance having a [math]\displaystyle{ D_{ll}(n, \delta) }[/math] value for each bin, with the regression again ultimately yielding a single [math]\displaystyle{ \varepsilon }[/math] value for the data segment
    3. The regression is typically done as a least-squares fit, either as:

      [math]\displaystyle{ D_{LL} = a_0 + a_1 (\delta r_0)^{2/3} }[/math]; or as
      [math]\displaystyle{ D_{ll} = a_0 + a_1 (\delta r_0)^{2/3}+a_3((\delta r_0)^{2/3})^3 }[/math]

      the former being the canonical method that excludes non-turbulent velocity differences between bins, whereas the latter is a modified method that includes non-turbulent velocity differences between bins due to any oscillatory signal (e.g. surface waves, motion of the ADCP on a mooring).
  6. Use the coefficient [math]\displaystyle{ a_1 }[/math] to calculate [math]\displaystyle{ \varepsilon }[/math] as

    [math]\displaystyle{ \varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3} }[/math]

    where [math]\displaystyle{ C_2 }[/math] is an empirical constant, typically taken as 2.0 or 2.1.


PERHAPS WE CAN INCLUDE A FIGURE LIKE THIS TO HELP DEFINE VARIABLES.

Next step: Apply quality-control on velocity time series data (QA1)

Previous step: Apply quality-control on dissipation rates (QA2)

Return to ADCP Flow Chart front page