[math]\displaystyle{ \Delta t }[/math]
|
Sampling interval
|
[math]\displaystyle{ \frac{1}{f_s} }[/math]
|
[math]\displaystyle{ \mathrm{s} }[/math]
|
[math]\displaystyle{ f_s }[/math]
|
Sampling rate
|
[math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math]
|
[math]\displaystyle{ \mathrm{s^{-1}} }[/math]
|
[math]\displaystyle{ \Delta s }[/math]
|
Sample spacing
|
[math]\displaystyle{ \Delta s = U_P \Delta t }[/math]
|
[math]\displaystyle{ \mathrm{m} }[/math]
|
[math]\displaystyle{ \Delta l }[/math]
|
Linear dimension of sampling volume (instrument dependent)
|
|
[math]\displaystyle{ \mathrm{m} }[/math]
|
[math]\displaystyle{ f }[/math]
|
Cyclic frequency
|
[math]\displaystyle{ f=\frac{\omega}{2\pi} }[/math]
|
[math]\displaystyle{ \mathrm{Hz} }[/math]
|
[math]\displaystyle{ \omega }[/math]
|
Angular frequency
|
[math]\displaystyle{ \omega = 2\pi f }[/math]
|
[math]\displaystyle{ \mathrm{rad\, s^{-1}} }[/math]
|
[math]\displaystyle{ f_N }[/math]
|
Nyquist frequency
|
[math]\displaystyle{ f_N=0.5f_s }[/math]
|
[math]\displaystyle{ \mathrm{Hz} }[/math]
|
[math]\displaystyle{ k }[/math]
|
Cyclic wavenumber
|
[math]\displaystyle{ k=\frac{f}{U_P} }[/math]
|
[math]\displaystyle{ \mathrm{cpm} }[/math]
|
[math]\displaystyle{ \hat{k} }[/math]
|
Angular wavenumber
|
[math]\displaystyle{ \hat{k}=\frac{\omega}{U_P} = 2\pi k }[/math]
|
[math]\displaystyle{ \mathrm{rad\, m^{-1}} }[/math]
|
[math]\displaystyle{ \tilde{k} }[/math]
|
Normalized wavenumber
|
e.g., [math]\displaystyle{ \tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4} }[/math]
|
-
|
[math]\displaystyle{ \tilde{\Phi} }[/math]
|
Normalized velocity spectrum
|
e.g., [math]\displaystyle{ \tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k) }[/math]
|
-
|
[math]\displaystyle{ \tilde{\Psi} }[/math]
|
Normalized shear spectrum
|
e.g., [math]\displaystyle{ \tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k) }[/math]
|
-
|
[math]\displaystyle{ k_\Delta }[/math]
|
Nyquist wavenumber, based on sampling volume size [math]\displaystyle{ \Delta l }[/math]
|
[math]\displaystyle{ k_\Delta=\frac{0.5}{\Delta l} }[/math]
|
[math]\displaystyle{ \mathrm{cpm} }[/math]
|
[math]\displaystyle{ k_N }[/math]
|
Nyquist wavenumber, via Taylor's hypothesis
|
[math]\displaystyle{ k_N=\frac{f_N}{U_P} }[/math]
|
[math]\displaystyle{ \mathrm{cpm} }[/math]
|
[math]\displaystyle{ \Psi(k) }[/math]
|
Shear spectrum. Use [math]\displaystyle{ \Psi_1 }[/math], [math]\displaystyle{ \Psi_2 }[/math] to distinguish the orthogonal components of the shear. Use [math]\displaystyle{ \Psi_N }[/math] for the Nasmyth spectrum, [math]\displaystyle{ \Psi_{PK} }[/math] for the Panchev-Kesich spectrum and [math]\displaystyle{ \Psi_L }[/math] for the Lueck spectrum.
|
|
[math]\displaystyle{ \mathrm{s^{-2}\, cpm^{-1}} }[/math]
|
[math]\displaystyle{ \Phi(k) }[/math]
|
Velocity spectrum. Use [math]\displaystyle{ \Phi_u }[/math], [math]\displaystyle{ \Phi_v }[/math], [math]\displaystyle{ \Phi_v }[/math], or [math]\displaystyle{ \Phi_1 }[/math], [math]\displaystyle{ \Phi_2 }[/math] , [math]\displaystyle{ \Phi_3 }[/math] for the different orthogonal components of the velocity. Use [math]\displaystyle{ \Phi_K }[/math] for the Kolmogorov spectrum.
|
|
[math]\displaystyle{ \mathrm{m^2\, s^{-2}\, cpm^{-1}} }[/math]
|