Processing your ADCP data using structure function techniques: Difference between revisions

From Atomix
mNo edit summary
Yuengdjern (talk | contribs)
No edit summary
Line 6: Line 6:
# Calculate the [[along-beam velocity fluctuation]] time-series in each bin <math>n</math>, where [<math>v’(n, t)</math>] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
# Calculate the [[along-beam velocity fluctuation]] time-series in each bin <math>n</math>, where [<math>v’(n, t)</math>] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
# Select the maximum distance (<math>r_{max}</math>) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [<math>n_{\text{rmax}} = r_{max} / r_0</math>]
# Select the maximum distance (<math>r_{max}</math>) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [<math>n_{\text{rmax}} = r_{max} / r_0</math>]
# Calculate the structure function <math>D_{ll}</math> for all possible bin separations <math>\delta</math> using either a [[bin-centred difference scheme]] or a [[forward-difference]] scheme. Consider [[Final data review (QA2) | QA2 requirements]] when choosing differencing scheme.  
# Calculate the structure function <math>D_{ll}</math> for all possible bin separations <math>\delta</math> within <math>r_{max}</math>  using either a [[bin-centred difference scheme]] or a [[forward-difference]] scheme. Consider [[Final data review (QA2) | QA2 requirements]] when choosing differencing scheme.  
# Perform a [[Regressing structure function against bin separation | regression of <math>D_{ll}(n,\delta)</math> against <math>(\delta r_0)^{2/3}</math>]] for the appropriate range of bins and <math>\delta</math>r<sub>0</sub> separation distances. Be aware of special considerations for forward-difference, center-difference schemes.   
# Perform a [[Regressing structure function against bin separation | regression of <math>D_{ll}(n,\delta)</math> against <math>(\delta r_0)^{2/3}</math>]] for the appropriate range of bins and <math>\delta</math>r<sub>0</sub> separation distances. Be aware of special considerations for forward-difference, center-difference schemes.   
# Use the coefficient <math>a_1</math> to calculate <math>\varepsilon</math> as <br /><br /> <math>\varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3}</math> <br /><br /> where <math>C_2</math> is an [[ Structure function empirical constant | empirical constant]], typically taken as 2.0 or 2.1.  
# Use the coefficient <math>a_1</math> to calculate <math>\varepsilon</math> as <br /><br /> <math>\varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3}</math> <br /><br /> where <math>C_2</math> is an [[ Structure function empirical constant | empirical constant]], typically taken as 2.0 or 2.1.  

Revision as of 10:25, 10 December 2021

To calculate the dissipation rate at a specific range bin and a specific time ensemble:

Schematic showing along-beam distance [math]\displaystyle{ r }[/math] and radial velocities.
  1. Extract or compute the along-beam bin center separation [[math]\displaystyle{ r_0 }[/math]] based on the instrument geometry
  2. Calculate the along-beam velocity fluctuation time-series in each bin [math]\displaystyle{ n }[/math], where [[math]\displaystyle{ v’(n, t) }[/math]] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
  3. Select the maximum distance ([math]\displaystyle{ r_{max} }[/math]) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [[math]\displaystyle{ n_{\text{rmax}} = r_{max} / r_0 }[/math]]
  4. Calculate the structure function [math]\displaystyle{ D_{ll} }[/math] for all possible bin separations [math]\displaystyle{ \delta }[/math] within [math]\displaystyle{ r_{max} }[/math] using either a bin-centred difference scheme or a forward-difference scheme. Consider QA2 requirements when choosing differencing scheme.
  5. Perform a regression of [math]\displaystyle{ D_{ll}(n,\delta) }[/math] against [math]\displaystyle{ (\delta r_0)^{2/3} }[/math] for the appropriate range of bins and [math]\displaystyle{ \delta }[/math]r0 separation distances. Be aware of special considerations for forward-difference, center-difference schemes.
  6. Use the coefficient [math]\displaystyle{ a_1 }[/math] to calculate [math]\displaystyle{ \varepsilon }[/math] as

    [math]\displaystyle{ \varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3} }[/math]

    where [math]\displaystyle{ C_2 }[/math] is an empirical constant, typically taken as 2.0 or 2.1.




Next step: Apply quality-control on dissipation rates (QA2)

Previous step: Apply quality-control on velocity time series data (QA1)

Return to ADCP Flow Chart front page